
Parallel Branch-And-Bound Algorithms: Survey and Synthesis
Author(s): Bernard Gendron and Teodor Gabriel Crainic
Source: Operations Research, Vol. 42, No. 6 (Nov. - Dec., 1994), pp. 1042-1066
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/171985
Accessed: 25/09/2009 14:40

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=informs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Operations Research.

http://www.jstor.org

http://www.jstor.org/stable/171985?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs

PARALLEL BRANCH-AND-BOUND ALGORITHMS:
SURVEY AND SYNTHESIS

BERNARD GENDRON
University of Montreal, Montreal, Quebec, Canada

TEODOR GABRIEL CRAINIC
DSA, University of Quebec at Montreal and CRT, University of Montreal, Montreal, Quebec, Canada

(Received May 1993; revision received June 1994; accepted July 1994)

We present a detailed and up-to-date survey of the literature on parallel branch-and-bound algorithms. We synthesize
previous work in this area and propose a new classification of parallel branch-and-bound algorithms. This classification
is used to analyze the methods proposed in the literature. To facilitate our analysis, we give a new characterization of
branch-and-bound algorithms, which consists of isolating the performed operations without specifying any particular
order for their execution.

Branch-and-bound (BB) methods are well-known
algorithmic tools for solving NP-hard optimiza-

tion problems. For many of these inherently difficult
problems, only small instances can be solved in a
reasonable amount of time on sequential computers.
Consequently, the use of parallelism to speed up the
execution of BB algorithms has emerged as a way to
solve larger problem instances, and has attracted
many researchers in recent years. One objective of
this paper is to give a detailed survey of what has been
achieved in this field. Another objective is to intro-
duce the reader to many of the challenges associated
with adapting BB algorithms for parallel architec-
tures. In particular, we present several strategies to
exploit parallelism and we show, by using examples
taken from the literature, that the choice of a strategy
is greatly influenced by the design of the parallel
machine used, as well as by the characteristics of the
problem.

Surveys of parallel BB algorithms have been pre-
sented by Roucairol (1989a), Pardalos and Li (1990),
and Trienekens and de Bruin (1992), and can also be
found in papers dedicated to the general area of par-
allelism in combinatorial optimization and mathemat-
ical programming (Kindervater and Lenstra 1985,

1986, 1988, Ribeiro 1987, Roucairol 1989b, Pardalos,
Phillips and Rosen 1992, Grama, Kumar and Pardalos
1993, Eckstein 1994a). Many new developments,
however, have appeared since and, consequently, are
not covered in these surveys. The present paper at-
tempts to fill this gap. It also differs significantly from
previous work in several aspects. First, it gives a new
presentation of BB algorithms which consists of iso-
lating the operations performed without specifying
any particular order for their execution. The useful-
ness of this approach is shown by stating the conver-
gence of exact BB methods under general conditions
that hold for most sequential and parallel algorithms.
Second, it proposes a new classification of parallel BB
algorithms, which is used to characterize and analyze
the methods proposed in the literature. Third, it is
intended as a guide to the conceptual design of par-
allel BB algorithms. Our aim here is to diffuse as much
pertinent information as possible to encourage further
new developments. In particular, when describing a
reported algorithm, we aim to identify the original
contributions, specify the problem that was solved
and the architecture being used, and give a summary
of significant results.

Subject classifications: Programming, implementation on parallel architectures. Programming, integer, algorithms: survey.
Area of review: COMPUTING.

Operations Research 0030-364X/94/4206-1042 $01.25
Vol. 42, No. 6, November-December 1994 1042 ? 1994 Operations Research Society of America

GENDRON AND CRAINIC / 1043

The paper is organized as follows. Section 1 gives
a presentation of BB algorithms, and introduces the
related terminology used in the remainder of the text.
Section 2 shows how parallelism can be exploited in
BB algorithms, and characterizes many of the problems
that one has to face when adapting these methods to
parallel architectures. A detailed survey of the field,
including a historical overview, is the subject of Sec-
tion 3. Finally, the conclusion summarizes this work
and proposes some research directions.

1. BRANCH-AND-BOUND ALGORITHMS

The characterization of BB algorithms has been stud-
ied by many researchers (Bertier and Roy 1964, Agin
1966, Lawler and Wood 1966, Balas 1968, Mitten
1970, Geoffrion and Marsten 1972, Kohler and
Steiglitz 1974, 1976, Rinnooy Kan 1976, Sekiguchi
1981, Nau, Kumar and Kanal 1984, Ibaraki 1987,
McKeown, Rayward-Smith and Turpin 1991), but
most of the previous descriptions assume that the
algorithms are executed in a sequential environment.
In this section, we describe the operations involved in
all BB algorithms without specifying their relative
order of execution. Hence, our description can be
shown to be valid for most BB algorithms executed in
a parallel environment.

1.1. Branch-and-Bound to Find One Optimal
Solution

BB may be seen as an implicit enumeration method
for solving the optimization problem P: Z(P) =

min,sft(x), where f is a real-valued function, and S
is a subset of a real vector space V. We assume that
P can be solved by enumerating a finite number of
points (not necessarily known in advance) in S, and
that it is an NP-hard problem, which implies that no
polynomial (in the dimension of V) algorithm is
known to solve it. We also assume that the problem
is either infeasible (S = 0) or has a finite optimal value
(Z(P) > -Xo).

When the problem is not tractable, a
divide-and-conquer approach may be used to solve it.
It consists of decomposing the set of feasible solutions
S into n subsets S1, ... , Sn, such that Ui=1 5
One identifies SD = Un1 Si as the decomposed set,
while its complement SE = S - U7 1 Si is called the
excluded set. Let pD and pE denote the optimization
problems associated with the decomposed and the
excluded sets, respectively. We assume that the op-
timal value of pD is not worse than the optimal value
of PE, that is Z(PD) < Z(PE). When SE = 0 (we then
assume Z(PE) = +oo), the decomposition is called a

division of S. If the subsets are also mutually disjoint
(si n sj = o, i ? j), the decomposition is called a
partition of S. Let Pi denote the optimization problem
associated with subset Si, and Z(Pi) its optimal value
(i = 1, ... , n). We then have Z(P) = min1<iSn

Z(Pi) (with the convention that an infeasible problem
has an infinite optimal value). If subproblems
P, ... , Pn are not solved directly, a similar decom-
position, called a branching operation, may be ap-
plied to each of them. Successive decompositions
may be performed until all subproblems obtained are
easy to solve (we will see shortly, however, that in
most cases, it is not necessary to solve all subprob-
lems). It is assumed that the whole process generates
a finite number of subproblems, because P can be
solved by enumerating a finite number of points in S.

A subproblem Q obtained by performing branching
operations need not be decomposed for one of two
reasons:

Elimination Rule 1: The subproblem has been solved,
that is, it is either infeasible, or an optimal solution
has been found.

Elimination Rule 2: Another subproblem R is known
to have an optimal value which is not worse than the
optimal value of the given subproblem, that is, Z(R)
6 Z(Q).

At first sight, it seems that to apply the second
elimination rule, one must know the optimal values of
the subproblems. However, it is sufficient to know
only a lower bound on the optimal value of Q and an
upper bound on the optimal value of R. This is the
role of the bounding operation. It associates with
each subproblem Q a lower bound Z'(Q), and an
upper bound ZU(Q). Usually, a finite upper bound for
a given subproblem Q also corresponds to a feasible
solution to that subproblem, and hence, to the original
problem P. Thus, if a given subproblem Q has a lower
bound greater or equal to a known upper bound on the
optimal value of the problem, then it need not be
decomposed. This version of the second elimination
rule is called the lower bound test. Another version of
this rule, the dominance test (Kohler and Steiglitz
1974, Ibaraki 1977), compares directly two subprob-
lems and, on the basis of problem-specific rules, de-
termines if one has a better optimal value than the
other (it is then said that it dominates the other).
The dominance test is rarely used, while the lower
bound test is universal in all BB algorithms.

The BB algorithm thus consists of performing
branching and bounding operations, as well as testing
the elimination rules, and can be described as the

1044 / GENDRON AND CRAINIC

process of building a tree, called a BB tree. The root
of this tree is the original problem, while the sons of
a given node (subproblem) Q are the subproblems
obtained by decomposition of Q. The leaves of the
tree are the subproblems that one does not decom-
pose, and we distinguish between leaves of type 1,
solved subproblems, and leaves of type 2, subprob-
lems not decomposed due to the application of the
second elimination rule. To each BB tree, we also
associate a special tree, called basic tree, which is
obtained by performing the same operations, but
without testing the second elimination rule. Thus, two
algorithms that perform the same branching and
bounding operations on all subproblems, though pos-
sibly not in the same order, will have the same asso-
ciated basic tree.

While the BB tree is built, the subproblems may be
in one of the following three states: generated, eval-
uated, or examined. A subproblem is generated when
it has been obtained from another subproblem by
decomposition (initially, the original problem is the
only generated subproblem). A generated subproblem
is evaluated when a bounding operation has been
applied to it, while it is examined if either a branching
operation has been performed on it (in this case, we
say it was decomposed), or the elimination rules have
shown that it is not necessary to decompose it (in this
case, we say it was eliminated). Let G denote the set
of all generated subproblems, and define the corre-
sponding partition:

Goo = {QEG: Q is not evaluated
and not examined},

Go, = {Q E G: Q is not evaluated and examined},

G10 = {Q E G: Q is evaluated and not examined},

G1 = {Q E G: Q is evaluated and examined}.

1.2. Convergence of the Branch-and-Bound
Algorithm

When all generated subproblems have been exam-
ined, the algorithm stops and the best upper bound of
all evaluated subproblems is the optimal value of the
problem. This claim may be proven, provided that
one uses a bounding operation and elimination rules
that satisfy the following Convergence Assumptions:

1. A finite upper bound for any evaluated subproblem
corresponds to a feasible solution to the original
problem, i.e., the bound is obtained by evaluating
f at a point of S.

2. A generated subproblem Q is solved if it is
evaluated, and Z'(Q) = ZU(Q) (when the

subproblem is infeasible, we adopt the convention
that Z'(Q) = ZU(Q) = +oo).

3. Consider any list of subproblems Qo, Ro, ... lo Qk,

Rk, k > 0, where Ri is a leaf and either Qi = Ri,
orRi is a descendant of Qi such that Z(Qj) = Z(Ri)
for i = 0, ..., k. Then, subproblem Ri is not
eliminated, using the dominance test, by subprob-
lemQ(i+ 1 mod k+ 1), for i = 0, , * * , k.

The first assumption ensures that the best upper
bound of all evaluated subproblems corresponds to a
feasible solution (if one exists), while the second as-
sumption gives a condition based only on the bound-
ing operation for applying the first elimination rule.
The third assumption further characterizes the second
elimination rule when it is represented by a domi-
nance test, and prevents deadlock situations, as we
will see shortly in the proof of convergence. We are
now ready to state and prove the convergence
theorem:

Theorem. (Convergence of the BB Algorithm) Sup-
pose that the three convergence assumptions are sat-
isfied by the BB algorithm. When all generated
subproblems have been examined, one has:

1. There exists at least one evaluated subproblem
(G 11 ? 0)

2. The evaluated subproblem Q having the smallest
upper bound among all evaluated subproblems
(ZU(Q) < Z'(R) for all R E G1l), identifies an
optimal solution of P, if one exists, and Z(P)
Zu(Q).

To prove the first part of the theorem, suppose the
contrary. This implies that all leaves are of type 2,
since, by the second convergence assumption, all
leaves of type 1 are evaluated. Now, consider a sub-
problem QO which eliminated a given leaf R. By def-
inition of the branching operation and the finiteness of
the BB tree, there must exist a leaf Ro which is either
a descendant of QO or QO itself, such that Z(Qo) =
Z(RO). Since Ro is a leaf of type 2, there exists a
subproblem Q1 which eliminated R0. By the previous
argument, we can identify a leaf R1 which is either a
descendant of Q1 or Q1 itself, such that Z(Q1) =
Z(R). By applying the same argument a finite num-
ber of times, we will eventually reach leaf R, because
there is a finite number of leaves. This would generate
a list of subproblems QO, Ro, ..., Qk, Rk = R, k >
O that contradicts the third convergence assumption.
Hence, there must exist at least one evaluated
subproblem.

GENDRON AND CRAINIC / 1045

To prove the second part of the theorem, we dis-
tinguish two cases. In the first case, suppose that P is
infeasible (Z(P) = +oo). This implies that Q is infea-
sible also and ZU(Q) = +oo, so that Z(P) = Zu(Q),
and the theorem is verified. In the second case, sup-
pose that P is feasible (Z(P) < +oo). We then prove
the following assertion: for allR E G, Z(R) ? ZU(Q).

This assertion implies that Z(P) ? Zu(Q), so that Q
has a finite upper bound value. Thus, by the first
convergence assumption, ZU(Q) corresponds to a fea-
sible solution of P, and Z(P) < ZU(Q). Putting the
two inequalities together, we get the desired result
and the feasible solution corresponding to Z'(Q) is
also optimal.

To prove the assertion, suppose the contrary:
3 R E G, Z(R) < Zu(Q). Without loss of generality,
we can assume that R is a leaf because, if it is not,
there exists a leaf which is a descendant of R having
the same optimal value. Now, we distinguish two
cases: R is a leaf of type 1 or R is a leaf of type 2. If
R is a leaf of type 1, Z(R) = ZU(R) by the second
convergence assumption. But, ZU(Q) < Zu(R) by the
definition of Q. Thus, we have ZU(Q) < Zu(R) =
Z(R) < Zu(Q), a contradiction. If R is a leaf of type
2, then there exists a subproblem QO which eliminated
R and Z(Qo) < Z(R). By definition of the branching
operation, there must exist a leaf Ro which is either a
descendant of QO or Qo itself, such that Z(Qo) =
Z(RO). Again, we distinguish the same two cases. If
Ro is a leaf of type 1, we have ZU(Q) < Zu(Ro) -

Z(RO) - Z(Q0) S Z(R) < ZU(Q), a contradiction. If

Ro is a leaf of type 2, we apply the same reasoning as
above to identify subproblems Q1 and R1, such that
Z(R1) = Z(Q1) < Z(RO), and R1 is a leaf. By re-
peating the same argument a finite number of times,
we will eventually reach either a leaf of type 1, in
which case a contradiction is obtained in the same
way as above, or leaf R. In that case, a list QO,
Ro ... , Qk, Rk = R, k > 0, contradicting the third
convergence assumption would have been generated
by the algorithm, which yields a contradiction. This
completes the proof of the assertion and, conse-
quently, of the convergence theorem.

If the second elimination rule consists only of the
lower bound test, the convergence is easier to prove,
because in that case we no longer need the third
convergence assumption. We first reformulate the
second elimination rule in the following way:

Elimination rule 2 (by lower bound test): Q is not
decomposed if it is evaluated, and another evaluated
subproblem R has an upper bound which is not worse
than the lower bound of Q, that is, Zu(R) < Z'(Q).

With this new definition, the first part of the con-
vergence theorem is trivially verified, because all
leaves are now evaluated, and there exists at least one
leaf, the number of generated subproblems being fi-
nite. To prove the second part, we proceed in the
same way as above, with the exception that the as-
sertion: for all R E G, Z(R) ? Zu(Q), is now easier
to prove. Suppose the contrary: 3 R E G, Z(R) <
Zu(Q), and assume, without loss of generality, that R
is a leaf. If R is a leaf of type 1, we obtain a contra-
diction in the same way as above. If R is a leaf of type
2, then there exists an evaluated subproblem R * such
that ZU(R *) < Z'(R). Thus, it follows that ZU(Q) <
Zu(R*) < Z'(R) < Z(R) < Zu(Q), which is a con-
tradiction. This proves the assertion and, hence, the
convergence theorem.

1.3. Other Branch-and-Bound Algorithms

It is easy to modify the description given in subsection
1.1 to define an algorithm that identifies all optimal
solutions. First, we redefine the branching operation
such that pE has an optimal value which is strictly
worse than pD, that is, Z(P") < Z(PE). Second, we
impose a strict inequality to the second elimination
rule. Then, when all generated subproblems have
been examined, each evaluated subproblem with the
smallest upper bound identifies an optimal solution,
and by definition of the branching operation, all op-
timal solutions have been found. The proof of con-
vergence proceeds exactly as above, with the
exception that the third convergence assumption is
redundant, because the type of list it prohibits is now
impossible to obtain.

It is also possible to modify the method to find only
an approximate solution. One may modify the branch-
ing operation in such a way that the excluded set may
contain an optimal solution; relax the condition that
all generated subproblems must be examined before
the algorithm stops; or use an E-approximate algo-
rithm where the second elimination rule is modified
such that a subproblem Q is eliminated by another
subproblem R if Z(R) - e < Z(Q), where e > 0 is a
parameter that may change its value during the exe-
cution of the algorithm. The three approaches may be
combined to obtain a wide variety of heuristic
methods.

1.4. Sequential Branch-and-Bound Algorithms

We conclude Section 1 with some general remarks
about the mechanism of the operations, and their
order of execution in a traditional sequential environ-
ment (one process, with access to a single memory,
performs the instructions sequentially).

1046 / GENDRON AND CRAINIC

To solve a given problem, it is possible to define
several branching and bounding operations of varying
degrees of efficiency. With regard to the bounding
operation, experience in sequential environments has
shown that "tighter is better" (Ibaraki 1987). Further-
more, branching and bounding operations may be
interdependent, and may also depend on the history
of the process, that is, the particular order in which
the operations are performed. Finally, the time re-
quired to perform a given bounding operation may
vary significantly from one subproblem to another. In
recent years, the tendency has been to spend more
effort on the original problem than on other subprob-
lems. The idea, verified by experience, is to obtain as
soon as possible very tight bounds, in particular, a
good upper bound to reduce the number of generated
subproblems, and hence, the total amount of work.

A possible order for the execution of operations in
a sequential environment is given by the best-first BB
paradigm. In this method, the value of the best upper
bound found so far is kept in a variable best_Z for
executing rapidly the lower bound test (we assume,
for simplicity, that only the lower bound test is
used for verifying the second elimination rule). Also
kept in memory is a list L containing only evaluated
but not yet examined subproblems (set G 10). Initially,
best_Z is set to infinity and the original problem is
evaluated and, if not solved, added to the list. At each
step, if L is not empty, a subproblem Q in L with the
smallest lower bound among all subproblems in L is
selected (selection operation). The lower bound test
is performed on Q, and if Q is not eliminated, it is
decomposed according to the branching operation.
Each newly generated subproblem is then evaluated,
and if its upper bound is better than the current value
of best_Z, it replaces it. The two elimination rules are
also tested on the newly generated subproblems,
which are added to the list if not eliminated. Another
step is performed, until L becomes empty. The se-
lection operation, called best-first selection, may be
performed efficiently by managing the list as a heap
data structure. The main advantage of this method is
that, among all selection operations, the best-first
selection is optimal with respect to the number of
decomposed subproblems, when no ties occur among
lower bounds, and the branching and bounding oper-
ations do not depend on the history of the process
(Fox et al. 1978). A disadvantage is that the method
may require a lot of memory space for storing list L.

The depth-first BB algorithm defines another order
for the execution of operations. Here, the list L rep-
resents the set of generated subproblems not yet eval-
uated nor examined (set Goo). Initially, best_Z is set

to infinity, and the original problem is evaluated and,
if not solved, decomposed according to the branching
operation. At each step, if the last examined subprob-
lem was decomposed, all sons of this subproblem are
added to the list, except one which is evaluated and
examined. If the last examined subproblem was elim-
inated, the selection operation consists of choosing a
subproblem in L among those which have been gen-
erated most recently. This subproblem is then evalu-
ated and examined. Each time a subproblem is
evaluated, the variable best_Z is updated if neces-
sary. Another step is performed, until L is empty. A
stack data structure may be used to perform effi-
ciently the depth-first selection operation. There are
three main advantages to the method. First, among all
selection operations, it minimizes storage require-
ments (Ibaraki 1987). Second, when a subproblem is
not eliminated, a significant part of the information
generated by the last bounding operation is directly
available to hasten the evaluation of the next subprob-
lem (Nemhauser and Wolsey 1988). In comparison,
such a reoptimization feature is more difficult to im-
plement when the best-first selection operation is
used. Third, feasible solutions are generally found
more rapidly than with other selection operations
(Ibaraki 1987, Nemhauser and Wolsey 1988). This is
especially the case when upper bounds are computed
only for subproblems that correspond to leaves of the
basic tree. A disadvantage of the method is that it may
generate a large number of subproblems. This disad-
vantage may be reduced by identifying a good upper
bound in the early stages of the algorithm, thus
strengthening the lower bound test, and conse-
quently, reducing the number of generated
subproblems.

Other selection operations and many variations on
best-first and depth-first algorithms are also possible.
The reader is referred to Ibaraki (1987) for a more
complete treatment of this topic.

2. PARALLELISM IN BRANCH-AND-BOUND
ALGORITHMS

Computer architectures strongly influence the design
of parallel BB algorithms. Hence, before presenting a
classification of parallel BB algorithms and discussing
issues related to algorithmic design and performance
measures, we give a description of parallelism at the
hardware level. This is to be distinguished from par-
allelism at the software level, where several processes
can simulate parallelism by sharing the resources of
the same processor. Our description follows
Bertsekas and Tsitsiklis (1989).

GENDRON AND CRAINIC / 1047

2.1. Parallelism at the Hardware Level

The control parameter refers to the presence or ab-
sence of a global control unit. Here, we only consider
parallel architectures built according to the control-
flow model: Each processor in the system is executing
instructions in an order determined by a control unit.
The other models proposed to date are the data-flow
model, in which processors perform operations ac-
cording to the availability of the input data, and the
demand-flow model, in which processors execute op-
erations in an order determined by the requirements
for data (see Treleaven, Brownbridge and Hopkins
1982 for a more complete description of these
models). Control-flow parallel architectures with only
one control unit belong to the SIMD (Single Instruc-
tion Multiple Data) class, while systems with several
control units (generally one per processor) belong to
the MIMD (Multiple Instruction Multiple Data) class
(Flynn 1966).

Synchronization refers to the presence or the ab-
sence of a global clock used to synchronize opera-
tions among processors. When there is only one
clock, we speak of a synchronous system, while in the
presence of several clocks, typically one per proces-
sor, the system is called asynchronous. SIMD com-
puters are synchronous by definition, while MIMD
systems are mainly asynchronous.

The grain indicates the amount of data each pro-
cessor of the system can handle. In fine-grained sys-
tems, each processor can handle only a small amount
of data, corresponding to scalar or small vector op-
erations. At the other extreme, coarse-grained sys-
tems are characterized by the possibility of
simultaneous treatment of large amounts of data.

The communication parameter refers to the way
processors exchange information. There are two main
possibilities: Processors may write and read in a com-
mon memory accessible to all (shared-memory sys-
tems), or may exchange messages (message-passing
systems). Shared-memory systems may be further
characterized by the presence of either a physically
realized common memory, or a mechanism permit-
ting access from each processor to any area of mem-
ory: tightly or loosely coupled systems, respectively.
Message-passing systems are characterized by their
interconnection network topology, which describes
how processors are connected. The most common
topologies are the ring, the tree, the mesh, and the
hypercube (for details, see Bertsekas and Tsitsiklis).

Last, one considers the number of processors.
Massively parallel systems are made of a large num-
ber of processors, on the order of thousands.

Fine-grained systems are usually massively parallel,
while coarse-grained ones have generally less proces-
sors, say on the order of tens (but the situation is
changing rapidly, and there now exists some coarse-
grained systems with more than one thousand pro-
cessors). Note that tightly coupled shared-memory
systems are generally restricted to a small number of
processors, usually not more than twenty, due to the
difficulty of implementing simultaneous access to a
common memory without provoking bottlenecks.

The distinctions introduced at the hardware level
are less strict when one considers the software
level. Indeed, by adding appropriate software mech-
anisms, it is possible with some systems to simulate
the behavior of other systems, although the efficiency
of such simulations is questionable. For example,
an MIMD system may simulate an SIMD system,
or an asynchronous system may simulate a synchro-
nous system. For the remainder of the text, we mainly
consider parallelism at the software level, although
there is a strong relationship between the conception
of parallel algorithms at the software level and their
actual implementation on parallel architectures.

2.2. Classification of Parallel Branch-and-Bound
Algorithms

We identify three main approaches in designing par-
allel BB algorithms. Parallelism of type 1 introduces
parallelism when performing the operations on gen-
erated subproblems. It consists, for example, of ex-
ecuting the bounding operation in parallel for each
subproblem to accelerate the execution. Thus, this
type of parallelism has no influence on the general
structure of the BB algorithm and is particular to the
problem to be solved. Parallelism of type 2 consists of
building the BB tree in parallel by performing opera-
tions on several subproblems simultaneously. Hence,
this type of parallelism may affect the design of the
algorithm. This is also the case for parallelism of type
3, which implies that several BB trees are built in
parallel. The trees are characterized by different op-
erations (branching, bounding, testing for elimina-
tion, or selection), and the information generated
when building one tree can be used for the construc-
tion of another.

The three types of parallelism may be combined
either sequentially (Pekny and Miller 1992, for exam-
ple, who perform in parallel the bounding operation at
the root node, while parallelism of type 2 is exploited
for the rest of the algorithm), or hierarchically. In the
second case, for example, several BB trees are con-
sidered simultaneously, each of these trees is built
in parallel, while, finally, treating each subproblem in

1048 / GENDRON AND CRAINIC

parallel (Miller and Pekny 1993). Most of the time,
however, only one type of parallelism is exploited.

Parallelism of type 3, especially suited for imple-
mentation on coarse-grained asynchronous MIMD ar-
chitectures, has been the object of very few studies.
We briefly present three examples that illustrate its
behavior. In the first example, the BB trees being
built differ only in the branching operations (Pekny
1989, Miller and Pekny 1993). In the second example,
only the selection operation differentiates the BB
trees (Janakiram, Agrawal and Mehrotra 1988a, b,
Janakiram et al. 1988). A variant of the depth-first
operation, called randomized depth-first, is used. It
randomly selects the next subproblem to evaluate and
examine among the last generated subproblems.
Thus, there exists an infinitesimal probability that two
processes, each of them performing a randomized
depth-first operation, build the same BB tree. Repli-
cation of work is possible though, particularly at the
early stages of the algorithm. To avoid this, a global
list of the status of the subproblems in the first k levels
of the basic tree is maintained. Results of a simulation
with ten processes show that this feature is essential
to obtain good performance. They also suggest that an
implementation of this algorithm on shared-memory
systems is more appropriate than on message-passing
ones. Finally, in the third example, the BB trees are
differentiated only by the application of the lower
bound test (Kumar and Kanal 1984). The main idea is
to let each process perform the lower bound test with
different values for the upper bound. At any time during
the execution of the algorithm, one process (not nec-
essarily the same) uses the best upper bound found so
far by all processes, while the other processes take an
"optimistic" view by subtracting E > 0 from the value
of the best upper bound. Hence, this method essen-
tially consists of performing concurrently several
E-approximate BB algorithms. Since, at any time, at
least one process uses E = 0 to perform the lower
bound test, the whole algorithm can be shown to con-
verge to an optimal solution, if one exists. Note that this
method is appropriate only for algorithms that fre-
quently update the upper bound, in particular when
the bounding operation gives weak bounds, or when a
good starting upper bound is not known.

The second type of parallelism has been the object
of abundant work. The approach is mostly appropri-
ate for implementation on coarse-grained asynchro-
nous MIMD systems, although some studies have been
conducted on massively parallel fine-grained SIMD
systems (Kindervater and Trienekens 1988, Dehne,
Ferreira and Rau-Chaplin 1989a, b), on a pipeline com-
puter, and on a data flow architecture (Kindervater and

Trienekens). Fine-grained implementations, however,
are appropriate only for algorithms that require small
amounts of memory, particularly for the bounding op-
eration. As for SIMD systems, all instructions must be
the same for all processors, which is quite unnatural for
general BB algorithms (as noted at the end of Section 1,
the bounding operation may be quite different from one
subproblem to another). Results on a fine-grained
SIMD architecture and on a pipeline computer
(Kindervater and Trienekens) show that the overhead
due to the synchronization of all instructions is too
costly, while the experimental nature of the data flow
architecture, particularly the fact that only small in-
stances could be solved (Kindervater and Trienekens),
makes it difficult to draw general conclusions about its
usefulness when compared to the classical control-flow
approach.

To classify implementations of the second type of
parallelism on asynchronous MIMD systems, we first
distinguish between synchronous and asynchronous
algorithms. A synchronous algorithm is divided into
phases, such that in each phase the processes perform
instructions independently of each other, while com-
munications occur only between phases; thus, all pro-
cesses must synchronize before communicating
information. We further distinguish between strictly
and loosely synchronous algorithms. In the first case,
the communication protocol (which information to
send and where) is assumed fixed and does not vary
with different executions. These algorithms display a
deterministic behavior in the sense that the processes
follow exactly the same path for two different runs,
unless each computing phase has a nondeterministic
component. In a loosely synchronous algorithm, the
processes may not follow the same path for different
executions. For example, the communication proto-
col may depend on run-time information. When exe-
cuting asynchronous algorithms, communications
may occur at any time and are unpredictable. Thus,
these algorithms have a nondeterministic behavior.

The second parameter used in our classification is
based on the notion of work pool, which is a memory
location where processes find and store their units of
work (generated subproblems that are not yet exam-
ined). Typically, a process looking for work picks up
a subproblem in a work pool, and evaluates, or ex-
amines it. When it finishes its action, the process
usually stores the subproblems that are not yet ex-
amined in the same or in a different work pool. A
process may also take actions independently of any
work pool. For example, a subproblem newly gener-
ated by the process can be evaluated and even
examined without first being stored and retrieved

GENDRON AND CRAINIC / 1049

from a work pool. Our classification distinguishes
between single and multiple pool algorithms.

In the first case, there is only one memory location
where units of work are stored. The sequential best-
first and depth-first algorithms mentioned in subsec-
tion 1.4 are examples of single pool algorithms, where
the pool is managed as a single list. Note that the pool
may also be organized into two distinct lists
(Miller and Pekny 1989, Pekny and Miller 1990, 1992,
Kudva and Pekny 1993): One list contains subprob-
lems that are not evaluated nor examined (set Goo),
and another, subproblems that are evaluated but not
yet examined (set G1o). Single pool algorithms are
implemented mainly on shared-memory systems. On
message-passing architectures, it is possible to imple-
ment them by using the master-slave paradigm: One
process, called master, manages the work pool, and
sends work units to other processes, called slaves,
that send back results to fill the work pool.

In multiple pool algorithms, there are several mem-
ory locations where processes find and store their
units of work. Several organization schemes are pos-
sible, the three most common being the collegial, the
grouped, and the mixed. In a collegial algorithm, each
work pool is associated with exactly one process. In
a grouped organization, processes are partitioned,
and each work pool is associated with a subset of this
partition. Note that the collegial organization is a
particular case of the grouped one, where the parti-
tion is made of singletons. In a mixed organization,
each process has an associated work pool, but there
is also a global work pool, shared by all processes.

In conclusion, we can classify parallel BB algo-
rithms of type 2, intended to run on asynchronous
MIMD architectures, as either Synchronous Single
Pool (SSP), Asynchronous Single Pool (ASP),
Synchronous Multiple Pool (SMP), or Asynchronous
Multiple Pool (AMP) algorithms.

2.3. Algorithmic Design Issues

Other parameters may be used to characterize parallel
BB algorithms of type 2; see, in particular, the clas-
sification proposed by Trienekens and de Bruin.
However, instead of including these parameters in a
taxonomy, we think it is more useful to introduce
them as possible answers to problems of algorithmic
design which occur naturally in this type of parallel
BB algorithms.

One of these problems, the initial generation and
allocation of work units, arises at the beginning of the
execution of the algorithm, when only one subprob-
lem, the root node of the tree, is available to all
processes. Since it often happens that the branching

operation generates few subproblems, a start-up
phase where parallelism is not fully utilized seems
difficult to avoid. On the other hand, using parallelism
as soon as several work units become available may
not be a good policy either. Consider, for example, a
sequential depth-first algorithm using a dichotomous
branching scheme. It is common to define a branching
operation in such a way that only one of the two
newly generated subproblems has a good probability
of leading to an optimal solution. The depth-first se-
lection operation would precisely choose this sub-
problem, while the evaluation and examination of the
other subproblem would be delayed until the subtree
with the selected subproblem at its root is completely
examined. At this point, if an optimal solution has
been found, there is a good probability that the other
subproblem will be eliminated immediately. If the
same branching strategy is used in a parallel environ-
ment, and subproblems are examined as soon as they
become available, the two subproblems can be exam-
ined simultaneously. Then, the subtree rooted at the
subproblem not selected by the sequential depth-first
operation may now contain more generated subprob-
lems, resulting in extra work compared to the sequen-
tial algorithm. This explains the so-called detrimental
anomaly (Li and Wah 1984a), where a parallel algo-
rithm is slower on a given instance than the corre-
sponding sequential algorithm. The goal may thus be
stated as follows: Use all processes as soon as pos-
sible, while avoiding giving them unpromising sub-
problems (that have only a small chance of leading to
an optimal solution).

Several strategies have been proposed to address
this issue: 1) assign the original problem to one pro-
cess, and gradually broadcast among processes the
units of work as they are created; 2) generate several
subproblems by performing a special branching oper-
ation (the number of subproblems thus created being
normally larger than the number of processes); 3) one
process performs a sequential BB algorithm up to a
point where a "sufficient" number of unexamined
subproblems are available; 4) the processes perform a
sequential phase in which the same tree is built by
every process and, when the number of unexamined
subproblems becomes at least equal to the number of
processes, each process selects the subproblems on
which it will subsequently work. The first three ap-
proaches can be used in all types of algorithms, while
the last one is suited mainly for multiple pool algo-
rithms. The choice of an appropriate strategy depends
on practical considerations, such as the nature of the
parallel architecture being used and the characteris-
tics of the problem to solve.

1050 / GENDRON AND CRAINIC

Following the initial allocation of work units, de-
signing a policy for subsequent allocation and sharing
of work units among processes is another major issue.
The objectives of such a policy should be to balance
the workload among processes (all processes should
do an approximately equal amount of work to fully
utilize parallelism), and to feed them with promising
units of work, to avoid a situation where the parallel
algorithm would generate more subproblems than a
corresponding sequential algorithm. Achieving these
objectives is relatively easy in single pool algorithms.
In multiple pool algorithms, however, the situation is
more complex. One alternative is to dynamically cre-
ate new processes that will take parts of fully loaded
work pools (Schwan, Gawkowski and Blake 1988,
Schwan et al. 1989a, b, Jansen and Sijstermans 1989).
Another, more common, alternative is to have a fixed
number of processes and to allow exchange of work
units among pools. If this policy is used, we further
distinguish between static and dynamic allocation
strategies. In a static strategy, a given number of tasks
(subproblems) are initially created, and processes
subsequently share these tasks. This strategy is
mainly used in mixed organization algorithms, where
the global pool is used to keep the tasks, while each
process performs a sequential BB algorithm (by using
its own local pool) on one task selected from the
global pool. Thus, in a static approach, there are no
exchanges of subproblems among local work pools.
Dynamic strategies, on the contrary, allow sharing of
work units among local pools. Decisions on how to
perform these exchanges are usually taken by the
processes associated with the pools. We distinguish
three classes of dynamic strategies (see Kroger and
Vornberger 1990 for a similar classification):

1. Strategy on request. In this approach, a process
with an (almost) empty work pool reacts by send-
ing a request for work to another process. The
request may be accepted, and a part of one work
pool is transferred to the other, or rejected, in
which case the process may decide to send another
request. If the receiving process accepts the re-
quest, it must decide how many work units will be
transferred and how they will be selected.

2. Strategy without request. Here, processes decide
to share work units without being requested to by
other processes. Before sending work units to
another pool, each process must answer the fol-
lowing questions: How often to send work units?
To which pool to send them? How many work
units to send? How should they be selected?

3. Combined strategy. This approach combines the

two previous ones. Processes exchange units of
work without being asked for, and sends requests
when the level of their work pool is too low.

Another design issue concerns the application of
the second elimination rule. To apply it when it is
defined by the lower bound test (see Wah, Li and Yu
1985 for a brief discussion of the application of dom-
inance tests in a parallel environment), a process
needs an upper bound on the optimal value of the
given subproblem. Strategies for communicating up-
per bounds among processes depend mainly upon the
type of algorithm and the architecture being used to
implement it. For example, in an asynchronous algo-
rithm on a shared-memory system, a variable acces-
sible to all processes keeps the value of the best upper
bound generated so far. When a process finds a better
upper bound, it communicates it to other processes
simply by updating the value of the variable. In an
asynchronous algorithm on a message-passing archi-
tecture, each process may have access to a local
variable that keeps the best upper bound it knows.
When a process finds a better upper bound, it com-
municates it to other processes by sending its value.
Usually, this communication step consists in a broad-
cast of the message to all processes (during the at-
tempted broadcast, the message may be killed by
some process which has found a better upper bound).
The efficiency of such a broadcast is clearly depen-
dent on the interconnection network topology.

The issue of termination detection is trivially
solved for single pool and SMP algorithms. The real
problem arises only for AMP algorithms on message-
passing architectures, because it is not sufficient that
all work pools be empty to declare termination. In-
deed, some messages may still be traveling through
the interconnection network. Of course, this problem
is not specific to parallel BB algorithms, and methods
for detecting termination of algorithms on distributed
systems (without a central control) have been studied
widely (see, for example, the paper by Dijkstra and
Sholten 1980, and the references given in chapter 8 of
Bertsekas and Tsitsiklis).

2.4. Performance Measures

Apart from problems of algorithmic design, another
difficulty that arises naturally in a parallel environ-
ment is how to measure adequately the performance
of an algorithm (see also the paper by Barr and
Hickman 1993 on this subject). Related to parallel BB
algorithms, several measures are possible:

Quality of the solution: This measure is only rele-
vant in approximate BB algorithms. For example, one

GENDRON AND CRAINIC / 1051

may compare the best value obtained by a parallel
algorithm with the one found by a sequential algo-
rithm to investigate if parallelism can improve, and to
what extent, the quality of the solution.

Number of generated subproblems: There are two
variants of this measure: the total number of gener-
ated subproblems, and the number of subproblems
generated before the best solution is found. This last
measure introduces a timing notion, and may be dif-
ficult to estimate (in an AMP algorithm or an algo-
rithm of type 3, for example). The first measure may
be used in all types of algorithms, but it may not
represent a fair evaluation of the total amount of work
performed by the algorithm for two main reasons.
First, the work performed may vary significantly from
one subproblem to another (as noted in subsection
1.4). Second, it does not take into account additional
work introduced by parallelism, such as the sharing
of work units among processes, and the communica-
tion of an upper bound. Another problem related to
this measure (and to other measures as well) is that it
may vary significantly with different executions when
the algorithm has a nondeterministic behavior, par-
ticularly if it is an asynchronous one. To obtain an
adequate measure, it is then preferable to obtain sta-
tistics such as the mean and the standard deviation,
derived from experimenting with several runs.

Speedup and efficiency: The speedup measure at-
tempts to evaluate the improvement in time perfor-
mance when more than one processor is used. Let
T(p) denote the time to solve a given problem onp ?
1 processors. The speedup and the efficiency are then
defined as S(p) = T(1)/T(p) and E(p) = S(p)!p,
respectively. The major difficulties with this definition
consist of determining which algorithms should be
used to measure the times, and how these should be
measured. The answer to these questions depends
mainly on practical considerations. For example, one
definition for T(1) is the time required by the best
sequential algorithm. To evaluate the speedup of a
given parallel algorithm based on this definition, time
is measured with respect to the same parallel archi-
tecture for both the sequential and the parallel algo-
rithms. However, the best sequential algorithm for all
instances may not be known, as is often the case with
problems solved by BB algorithms. One may then use
as T(1) the time obtained by a "good" sequential
algorithm, or the time required by the parallel algo-
rithm running on one processor. These are the
methods of choice when studying the speedup per-
formance of a parallel BB algorithm. In particular, a
C"good" sequential BB algorithm can be one in which
the branching and bounding operations, as well as the

elimination rules, are defined similarly as in the par-
allel algorithm (it is not clear how to generalize this
definition of a "good" sequential algorithm for the
case of parallel algorithms of type 3).

3. SURVEY

In this section, we present a survey of the literature
on parallel BB algorithms of type 2, designed to be
executed on coarse-grained asynchronous MIMD ar-
chitectures (references to other types of algorithms
have been given in the previous section). Our survey
is based on a historical point of view, because the
research interests seem to follow a pattern according
to the period when researchers conducted their work.
We distinguish three periods. In the early years
(1975-1982), few parallel systems were available, and
researchers are forced either to simulate parallelism
or to use experimental architectures. Nevertheless,
they discover interesting phenomena, in particular
the possibility of superlinear speedups (S(p) > p).
In the following years (1983-1986), researchers focus
on the theoretical understanding of the performance
of parallel BB algorithms. They mainly study speedup
anomalies and derive expressions to evaluate the
maximum speedup attainable by certain types of par-
allel BB algorithms. Since 1987, the focus is on the
implementation of many types of algorithms on var-
ious parallel architectures.

3.1. Early Experiments (1975-1982)

The first simulation of a parallel BB algorithm was
conducted by Pruul (1975; the results were published
thirteen years later by Pruul, Nemhauser and
Rushmeier 1988). The algorithm may be classified as
AMP, because several processes operating asynchro-
nously perform their own depth-first procedure. A
coordinator is in charge of dispatching work units
among processes. Initially, it assigns the original
problem to one process. Subsequently, it answers
requests from processes that emptied their work pool
by giving them one subproblem taken from a non-
empty work pool. The experiments are conducted
with ten randomly generated 25-city instances of the
asymmetric traveling salesman problem (TSP), on up
to five processes. Results indicate that the number of
generated subproblems decreases significantly when
the number of processes is increased. Thus, average
speedups onp processes are sometimes larger thanp.

Results of another simulation experiment were
published by Imai, Fukumura and Yoshida (1979),
and Imai, Yoshida and Fukumura (1979). The
algorithm belongs to the ASP class, because several

1052 / GENDRON AND CRAINIC

processes operating asynchronously share the same
work pool, which is a list of subproblems not yet
examined nor evaluated. A depth-first selection op-
eration is used: A given process selects the next sub-
problem to evaluate and examine among the deepest
nodes in the tree. Experiments are conducted with
randomly generated trees and instances of the set
covering problem, on up to 128 processes. The same
tendency as in Pruul's study is observed and is called
an "6acceleration effect."

The first experiments on a parallel architecture ap-
pear to have been conducted at Carnegie-Mellon
University in 1975 (Weide 1982), on a 5-processor
loosely coupled shared-memory system, called
C.mmp. The parallel algorithm, designed to solve 0-1
integer linear programming problems (ILPP), is very
simple: Generate p subproblems and solve them in-
dependently using the same number of processes,
each performing a sequential BB algorithm. Weide
reports that average running times can sometimes be
reduced by partitioning into more subproblems than
there are processors, and by sharing the processors
among the active subproblem-solving processes. Ex-
periments with another parallel system designed at
Carnegie-Mellon University were reported by Fuller
et al. (1978). The parallel system, called Cm*, is a
10-processor loosely coupled shared memory archi-
tecture, in which each processor has its own local
memory. The authors selected several algorithms to
measure the efficiency of their architecture and its
adaptability to various algorithmic designs. Among
them is a BB algorithm for solving set partitioning
problems. The parallel implementation is of the AMP
type using a mixed organization. The algorithm starts
by generating more than k * p subproblems, where k
is a parameter arbitrarily fixed to a value of 10, and
p is the number of processes used (one per proces-
sor). These subproblems are added to the global list
where processes pick them, and perform sequential
depth-first BB on each of them. The best upper bound
found so far is kept in a global variable accessible
to all processes. Results with five instances on up to
eight processes show near-linear speedups, and even
super-linear speedups for one data instance.

The first detailed study on the performance of BB
algorithms implemented on a parallel architecture ap-
peared in 1982. Mohan (1982, 1983, 1984) designed
two single-list algorithms to solve the asymmetric
TSP, and performed experiments on a 50-processor
Cm*. The first algorithm is a synchronous master-
slave approach, and thus belongs to the SSP class. At
each phase, the master selects a subproblem accord-
ing to a best-first criterion, and performs a branching

operation which consists of creating p subproblems
and sending one to each of the p slaves. The slaves
perform bounding operations on the subproblems
they receive and send back their results to the master.
The second algorithm belongs to the ASP class. The
processes pick subproblems in the list according to a
best-first selection operation, perform branching and
bounding operations, and add the newly generated
subproblems to the list. Here, the branching operation
is the classical dichotomous scheme. Results of a single
run on a 30-city instance with up to 16 processors (one
process per processor) show that the first algorithm is
rather inefficient for two main reasons. First, the
branching operation generates too many subproblems
compared to the classical dichotomous rule. Second,
waiting times on each processor due to synchronization
and inexact workload balance significantly slow down
the execution. Results also show that the speedup
achieved by the second algorithm is rather limited due
to contention of access to the single list.

Other early experiments on loosely-coupled
shared-memory systems are mentioned in
M0ller-Nielsen and Staunstrup (1984), while parallel
BB algorithms of the AMP class designed for
message-passing architectures are presented in
El-Dessouki and Huen (1980), Burton et al. (1982),
DeWitt, Finkel and Solomon (1984), and Lavallee and
Roucairol (1985). Another approach for implementing
parallel BB algorithms consists of designing special-
ized hardware. MANIP, a specialized parallel sys-
tem, was first presented in 1981 (Wah and Ma 1981),
and subsequent improvements to the original design
were proposed in the following years (Wah and Ma
1984, Wah, Li and Yu 1984, 1985). The architecture
was never realized, but the efficiency of the design was
analyzed by performing simulations on a sequential
computer. Other specialized architectures were also
proposed by Harris and Smith (1977), and Desai
(1977, 1978, 1979).

3.2. Theoretical Studies (1983-1986)

Many researchers have studied the theoretical behav-
ior of SSP algorithms with the following characteris-
tics: 1) there are p processes performing branching
and bounding operations; 2) the best upper bound
found so far is kept in a global variable called best_Z,
accessible to all processes; 3) the subproblems are
stored in a single list L; 4) the algorithms are syn-
chronous, and may be described as follows. Initially,
the original problem is added to list L (possibly once
a bounding operation has been performed). At each
phase, min(JL , p) subproblems in L are chosen ac-
cording to a given selection criterion. Each selected

GENDRON AND CRAINIC / 1053

subproblem is treated by exactly one process. This
process performs branching and bounding operations,
and tests for elimination, on both the subproblem and
the new ones obtained by decomposition, in an order
that varies with the algorithm. The branching opera-
tion is assumed to be fixed and does not depend on the
selection criterion. At the end of each phase, best_Z
has been updated by all processes, and the generated
subproblems which have not been eliminated are
added to the list. The algorithm stops when the list is
empty at the beginning of a phase.

The selection criteria commonly used are similar to
the sequential ones. They can be characterized by a
selection function v, which associates with each sub-
problem Q a value v(Q), such that the subproblems
selected to be examined in priority have the smallest
v values. Thus, in a best-first algorithm, v(Q) =

Z'(Q), and in a depth-first algorithm v(Q) = -d(Q),
where d(Q) is the depth of subproblem Q in the BB
tree. Ties among the v values of several subproblems
are possible (in this case, they are broken arbitrarily
when performing the selection operation), unless the
selection function is one-to-one. It is possible to mod-
ify a selection function to ensure that it is one-to-one
(details can be found in Li and Wah 1984a).

The selection function plays a central role in un-
derstaniding two anomalous behaviors displayed by
parallel BB algorithms of the type described above.
Let I(p) be the number of phases performed by the
parallel BB algorithm using p processes to solve a
given problem instance. We have a detrimental anom-
aly if there exists a problem instance such that I(p 1)/
I(P2) < 1 and pi <P2. We have an acceleration
anomaly if there exists a problem instance such that
I(P /I(P 2) > P2/P1 and P1 < P2-

Anomalous behaviors of parallel best-first algo-
rithms (the selection function not necessarily being
one-to-one) were first studied by Lai and Sahni (1982,
1983, 1984), and later on by Lai and Sprague (1985a,
b, 1986). In particular, assuming that Z'(Q) < Z'(R)
whenever R is a descendant of Q in the basic tree,
they show that when P1 = 1 detrimental and accel-
eration anomalies cannot occur if all internal nodes of
the basic tree have a lower bound different from the
optimal value. However, they also show that detri-
mental and acceleration anomalies are possible for
arbitrary values of Pi' P2. For parallel depth-first
algorithms, Quinn (1983) shows a similar result, and
Li and Wah (1986b) provide sufficient conditions for
detrimental anomalies not to occur, and necessary
conditions for acceleration anomalies. In spite of the
possibility of anomalous behaviors, results of simu-
lations of best-first algorithms to solve the 0-1

knapsack problem and the TSP (Lai and Sahni 1984),
and of a depth-first algorithm to solve the TSP (Quinn
1983), show that anomalies, particularly detrimental
ones, are very rare.

Anomalous behaviors for more general selection
functions were studied by Burton et al. (1983), Li and
Wah (1984a, b, c, 1986a, 1990), Li (1985), and Wah, Li
and Yu (1984, 1985). In particular, whenp1 = 1, they
show that detrimental anomalies are impossible if the
selection function is one-to-one and v(Q) S v(R)
whenever R is a descendant of Q in the basic tree. Li
and Wah (1984c) also analyze the behavior of algo-
rithms that use dominance tests, and of e-approximate
algorithms. The basic results on anomalous behaviors
are difficult to extend to more general models of parallel
BB algorithms. Li and Wah (1986a) briefly analyze the
case where multiple lists are used, while Trienekens
(1989a, 1990) considers a class of algorithms that may
include asynchronous ones. However, the condition
defining this class of algorithms can be verified a priori
only for synchronous algorithms. Finally, Mans and
Roucairol (1993) study anomalies occurring in parallel
best-first algorithms in which ties among lower bounds
are broken using a second selection function.

Another related research subject is the derivation
of lower and upper bounds on the speedup obtained
by parallel BB algorithms. Quinn and Deo (1983,
1986) and Huang and Davis (1987) give upper bounds
on the speedup of an ASP algorithm using a single list
and a best-first selection operation, while Li and Wah
(1984b, 1986b) give bounds on the speedup of best-
first and depth-first SSP algorithms.

3.3. Experiments on Parallel Systems
(Since 1987)

Since 1987, researchers have focused on the design of
parallel BB algorithms and their implementation on
general-purpose parallel systems (one exception be-
ing the work by Cheng and Wang 1990, where a
specialized architecture is proposed for implementing
an AMP mixed organization algorithm). In this sub-
section, algorithms are grouped according to our clas-
sification and, for each class we select representative
algorithms and give both general descriptions, and an
overview of their most significant results.

3.3.1. Synchronous Single Pool Algorithms
As indicated previously, the SSP model has been used
mainly to study theoretical properties of parallel BB
algorithms. Few researchers have actually imple-
mented this approach on a parallel system. All
implementations of this approach were realized on
message-passing architectures by using a master-
slave model.

1054 / GENDRON AND CRAINIC

Quinn (1990) implements an SSP algorithm, similar
to the model described in subsection 3.2, on a
64-processor NCUBE/7 hypercube. The master pro-
cess, running exclusively on one processor, manages
the single list and selects subproblems to send to each
slave according to a best-first criterion. At every it-
eration, each slave receives one subproblem, per-
forms branching and bounding operations, and sends
back to the master the newly generated subproblems.
Experiments are performed on ten 30-vertex in-
stances of the TSP. A model is also proposed for
predicting the speedup performance of the algorithm.
Using this model, it is shown that the algorithm per-
forms reasonably well (being competitive with some
AMP algorithms), when the time required to perform
operations on one subproblem largely dominates the
time to communicate it.

McKeown et al. (1991; see also Rayward-Smith,
Rush and McKeown 1993, McKeown, Rayward-
Smith and Turpin 1991) implement a similar algorithm
on a network of transputers (using up to eight pro-
cessors), and report experiments on one instance of
the Steiner tree problem using a depth-first selection
operation. The work pool is stored in the memory of
the master processor, but contains only limited infor-
mation about the subproblems generated so far: The
priority of each subproblem (the value of the selection
function), its lower bound (to perform the lower
bound test before sending the subproblem), and the
processor on which the information about the sub-
problem is kept. When the master selects a subprob-
lem, it is assigned in priority to the processor which
keeps all the information concerning it. This scheme
clearly minimizes communication times when imple-
menting a single pool algorithm in a message-passing
environment. The algorithm appears, however, to be
less efficient than a corresponding ASP one.

Gendron and Crainic (1993b) (see also Gendron 1991)
choose an SSP approach to implement a parallel ver-
sion of a depth-first sequential approximate algorithm
for solving the multicommodity location problem with
balancing requirements. The algorithm stops when a
fixed number of subproblems have been examined. In
this context, it is crucial to avoid situations where the
parallel algorithm finds a worse solution than the one
obtained by the sequential algorithm. To attain this
objective, the authors divide the parallel algorithm into
two phases: a sequential phase, where the master pro-
cess performs the sequential method up to N iterations,
and a parallel phase. In this phase, the master selects
subproblems according to their depths, sends them
to the slaves, performs bounding and branching
operations on one subproblem, and examines the

subproblems sent to the slaves. The slaves only per-
form bounding operations on the subproblems they
receive. This scheme is justified by the fact that, for
most data instances, the time to perform the bounding
operation on one subproblem clearly dominates the
time for other computations or communications. Ex-
periments on a network of up to 16 transputers are
reported.

3.3.2. Asynchronous Single Pool Algorithms

Except for being asynchronous, almost all ASP algo-
rithms proposed in the literature have the same char-
acteristics as the SSP algorithms described
previously: a fixed number of processes, a single list
of unexamined subproblems, and a global variable
that keeps the best upper bound found so far. These
algorithms were implemented both on shared-memory
systems and on message-passing architectures. In the
second case, either the operating system's primitives
are used to simulate a shared-memory or a
master-slave approach is implemented. A theoretical
analysis of this type of implementation based on a
queueing network model, is given by Boxma and
Kindervater (1991). The model is used to analyze
the effect of variations in the number of slaves, or
in the speed of the master and the slaves.

Roucairol (1987a, b) implements an ASP best-first
algorithm on a 4-processor Cray X-MP 48 (a
shared-memory architecture) for solving the qua-
dratic assignment problem (QAP). Experiments are
also reported on an emulator and comparisons are made
with depth-first and random selection operations. Near-
linear speedups are observed. A similar implementation
on a 4-processor Cray2 is also used by Plateau and
Roucairol (1989) to solve the 0-1 multiknapsack prob-
lem. To the basic approach of Roucairol, the authors
add a mechanism to improve workload balancing: A
process accessing the pool is allowed to treat a sub-
problem only if its current load (measured from
the beginning of the execution) does not exceed t%
of the mean load (best results were obtained for t = 50).
Essentially the same approach as in Roucairol's paper
is also used by Boehning, Butler and Gillett (1988) for
solving ILPP with a simplex-based bounding proce-
dure. Experiments were performed on three shared-
memory systems with up to 20 processors. Superlinear
speedups were observed for some instances. Different
approaches for implementing ASP algorithms on
shared-memory architectures can also be found in Barr
and Stripling (1992) and Mohamed (1992).

Kumar, Ramesh and Nageshwara Rao (1988) also
implement a best-first ASP algorithm similar to
Roucairol's, but use a concurrent heap data structure

GENDRON AND CRAINIC / 1055

(Nageshwara Rao and Kumar 1988a, b) to manage the
list of subproblems. This structure allows multiple
heap insertions and deletions to be performed con-
currently. It is shown on two instances of the TSP that
this data structure dramatically improves perfor-
mances over the traditional heap structure. The au-
thors report experiments on many instances of the
TSP and the vertex cover problem (VCP) by using a
100-processor loosely coupled shared-memory sys-
tem, the BBN Butterfly computer. In particular, when
the concurrent heap is used, a near-linear speedup is
observed on a 25-city instance of the TSP. It is also
shown that an ASP approach may not be as efficient
for solving the VCP, because the time to perform a
bounding operation for the VCP is significantly less
than for the TSP (for the tested data instances). In this
case, contention for access to the single list, even
when it is managed as a concurrent heap, limits the
performance of the algorithm. Le Cun, Mans and
Roucairol (1993) (see also Mans 1992a) performed an
extensive comparative study of concurrent priority
queue data structures used in best-first BB algo-
rithms. Their experiments on a shared-memory sys-
tem of nine processors confirm that the concurrent
heap structure, used by Kumar, Ramesh and
Nageshwara Rao, exhibits good speedup perfor-
mance. However, they also show that data structures
other than the classical heap may be more efficient in
a sequential environment. Consequently, although
concurrent access to some of these data structures
may be difficult, they could prove effective in reduc-
ing execution time, even in a parallel environment.

In Cannon and Hoffman (1990; see also Cannon
1988), a shared-memory system is simulated on a net-
work of eight DEC VAX stations by using operating
system functions. The algorithm is designed to solve
large-scale 0-1 ILPP by a simplex-based strong cutting
plane approach (also called branch and cut). Since the
bounding procedure requires significant computing
time, but also provides sharp bounds thus generating
few subproblems for most instances, a direct adaptation
of a sequential approach would not utilize the comput-
ing resources efficiently, particularly at the early stages
of the execution. The authors thus implement a parallel
starting phase that generates 32 subproblems, instead of
only one, to initialize the work pool (managed as a
shared file). They also implement mechanisms to
"pause" the treatment of a subproblem when it appears
that it may not lead to an optimal solution, and to
" resume" processing on it at a later time. Experimental
results are reported on seven instances. For one of
these instances, the sequential algorithm using the par-
allel starting phase is shown to be more efficient than

the traditional sequential algorithm that begins execu-
tion by treating the original problem.

Trienekens (1986, 1989b) implements a best-first
master-slave ASP algorithm on a distributed network
of heterogeneous computers. The master manages the
work pool and sends a subproblem to a slave as soon
as one becomes idle. Each slave receives a subproblem
from the master, performs the branching operation, and
sends back the newly generated subproblems, after
evaluating them. Experiments are reported on several
instances of the TSP with up to six processors. Results
of simulations of this algorithm are also given by de
Bruin, Rinnoy Kan and Trienekens (1988). A similar
approach is implemented on a 64-processor NCUBE/6
hypercube multicomputer by Abdelrahman and Mudge
(1988; see also Abdelrahman 1988) to solve the 0-1
ILPP. The authors observe that the speedup is limited
by two main factors: the communication overhead,
which increases with the size of the cube, and a poor
workload balancing, because processors nearer to the
master receive more subproblems than those farther
away. The algorithm is also shown to be inferior to an
AMP approach. Luling and Monien (1989) report ex-
periments with a similar algorithm implemented on a
network of 64 transputers connected by a tree topology.
They solve many instances of the VCP and report
nearly linear speedups. This is in contrast with one of
the conclusion of Kumar, Ramesh and Nageshwara
Rao (1988), who remark that an ASP approach may not
be appropriate for solving the VCP. This apparent con-
tradiction is easy to explain by the fact that Luling and
Monien show results for instances with 150 nodes,
while Kumar, Ramesh and Nageshwara Rao report
experiments on graphs with between 50 and 80 nodes.

McKeown et al. present extensive results of an
ASP algorithm, similar to their SSP approach, partic-
ularly in the way it manages the single work pool. The
algorithm was tested on a network of up to 32 trans-
puters, by solving several problems including instances
of the Steiner tree problem, the TSP, and the Chinese
postman problem. For the first two problems, the
bounding operation is nontrivial, particularly for
the TSP, and the algorithm shows near-linear speedups
for reasonably large instances. For the last problem,
however, the bounding operation is rapidly performed
and poor speedups are observed. When compared with
an AMP approach, the algorithm is shown to be com-
petitive when solving the TSP, but is completely out-
performed when solving the Chinese postman problem.

Eckstein (1994b, c) implements an ASP algorithm
on the CM-5, an asynchronous message-passing sys-
tem. The code bears some resemblance to commer-
cial sequential packages for solving general mixed

1056 / GENDRON AND CRAINIC

integer programming problems. The global work pool
is managed in a similar way as in McKeown et al.,
where the master process knows only the priority of
each subproblem, and the processor and memory ad-
dress of the remaining information. This distributed-
memory scheme leads to frequent asynchronous
communications between slaves and makes heavy
use of the speed and general-purpose topology of the
CM-5 architecture. Experiments on several real-
world data instances with up to 128 processors show
near-linear speedups for many hard problems, or run
times reduced to the order of seconds for easier prob-
lems. Preliminary results obtained with an AMP im-
plementation are also given and demonstrate the
superiority of the ASP approach on most instances.

Pekny and Miller (1990; see also Pekny 1989, Miller
and Pekny 1989, Pekny and Miller 1990, Balas et al.
1991, Kudva and Pekny 1993) propose an algorithm
that differs from the basic model described at the
beginning of this section. The global work pool is here
implemented by using two lists: a list of generated
s-ubproblems not yet evaluated nor examined, and a
list of evaluated subproblems not yet examined. A
process looking for work will give priority to uneval-
uated subproblems. This scheme minimizes memory
requirements, and also permits early identification of
a good upper bound, because an efficient upper
bounding procedure is called when evaluating every
subproblem. Experiments are reported on a
10-processor BBN Butterfly system for solving the
asymmetric TSP. Instead of focusing on the speed-up
performance of their algorithm, the authors empha-
size solving notably difficult very large instances that
could not be solved previously in a reasonable
amount of time by using traditional BB algorithms in
a sequential environment. They solve randomly gen-
erated instances of up to 10,000 cities (one instance of
this size being solved in about twenty minutes), and
notably difficult instances of up to 3,000 cities that are
designed to confound neighborhood search heuristics.

3.3.3. Synchronous Multiple Pool Algorithms

Very few algorithms of this type have been imple-
mented. Pardalos and Rodgers (1989, 1990; see also
Rodgers 1989) propose a collegial algorithm where
processes synchronize after each has performed
MAXV iterations, or has emptied its work pool. Dur-
ing the computation phase, the processes execute a
depth-first procedure using the subproblems in their
pool. During the communication phase, the processes
first exchange their status, "free" if the associated
work pool is empty, "busy" otherwise; then, when a
"busy" process identifies a "free" one, a subproblem

exchange is attempted. The algorithm is used to solve
0-1 unconstrained quadratic problems, and is imple-
mented on two shared-memory systems, the four-
processor Cray X-MP/48 and the six-processor IBM
3090-600E, and two message-passing hypercubes, a
32-processor iPSC/1 and a 16-processor iPSC/2. The
authors experimentally observe that many synchro-
nizations occur without any exchange of subprob-
lems, and modify the algorithm to define a
nonpreemptive version. When a process empties its
work pool, it asks the other processes for a synchro-
nization phase; processes enter in a synchronization
phase only if they have performed at least MAXV
iterations since the last synchronization phase, or if
they have emptied their work pool. Contrary to the
original version, the nonpreemptive version is not'
strictly synchronous, because processes may follow
different paths, if the algorithm is not run under the
same conditions for two consecutive executions.

Pargas and Wooster (1988) propose another loosely
synchronous collegial algorithm for solving a job
scheduling problem. These authors implement an ini-
tial work allocation strategy in which all processes
build the same tree, and subsequently split tasks by
allocating themselves some subproblems when their
number becomes sufficiently large. Each process then
performs its own depth-first procedure on the sub-
problems assigned during the initial phase. Processes
synchronize at regular intervals to exchange bounds,
and also for load balancing purposes. During the com-
munication phase, if a process has no more units of
work, it may take one of the subproblems initially
allocated to another process. This scheme does not
require any explicit exchange of subproblems, be-
cause the initial tree is accessible in the local memory
of each process. The implementation of the algorithm
on a 16-transputer FPS T-20 architecture must be
termed loosely synchronous, because the communi-
cation and computation procedures are executed as
concurrent processes on each transputer. Conse-
quently, it is possible that two consecutive runs will
not result in the same computations.

Laursen (1993b; see also Laursen 1991, 1993a) pre-
sents an SMP algorithm where processes (one per
processor) not only exchange bounds and subprob-
lems, but also information about their local times in
order to minimize loss due to synchronization. At
each step, every process communicates with a differ-
ent neighbor (an interconnection network topology
formed of perfect edge-disjoint matchings is assumed)
and adjusts its local time to be the average of the two
local times. In addition, two protocols for exchanging
subproblems are presented. Both aim at equalizing

GENDRON AND CRAINIC / 1057

the workloads (measured as the number of subprob-
lems in the local pool) of each pair of communicating
processes. In one protocol, the heaviest process
sends subproblems to the other without any further
restrictions, while in the second protocol, exchange
of subproblems occurs only when one of the pro-
cesses has less than two subproblems in its pool.
Experiments in solving many instances of the graph
partitioning problem, the weighted VCP and the QAP
on a network of 17 transputers are presented. They
show that the two protocols are equally effective, but
the second is to be preferred because it minimizes the
amount of communication.

3.3.4. Asynchronous Multiple Pool Algorithms

In this section, we consider only AMP algorithms
with a fixed number of processes (see Jansen and
Sijstermans, for an example of an algorithm with a
variable number of processes). Among the three main
organization schemes for the location of work pools
(subsection 2.2), the collegial approach has received
much attention. However, a mixed organization ap-
pears to be an attractive alternative, particularly
when the global work pool is used to share informa-
tion among processes to speed up the search for an
optimal solution, as verified by Kumar, Ramesh and
Nageshwara Rao. The authors present a dynamic al-
location strategy without request that is suited for
implementation on shared-memory systems. In this
strategy, there is a shared-memory location, called a
blackboard, through which subproblems are ex-
changed among processes. After selecting a subprob-
lem in its local work pool by using a best-first
criterion, a process performs the branching operation
only if the lower bound of the subproblem is within a
"tolerable" limit of the best subproblem stored in the
blackboard. If the selected subproblem is much better
than the best subproblem in the blackboard, the pro-
cess transfers some of its good subproblems to the
blackboard. If the selected subproblem is much worse
than the best subproblem in the blackboard, the pro-
cess transfers some good subproblems from the
blackboard to its local work pool. Results of experi-
ments with many instances of the TSP and the VCP
on a BBN Butterfly with up to 100 processors show
the superiority of the blackboard strategy over two
collegial algorithms based on dynamic allocation
strategies without request. Other mixed organization
algorithms that use a dynamic allocation strategy are
presented by Kindervater (1989) and Mans, Mautor
and Roucairol (1993), while mixed organization algo-
rithms with a static allocation strategy are proposed
by many authors: Zariffa (1986), Mraz and Seward

(1987), Altmann, Marsland and Breikreutz (1988),
Pardalos and Crouse (1989), Rost and Maehle
(1988), Li and Pardalos (1992), Laursen (1991,
1993a, b). Very few algorithms that propose a
grouped organization scheme were implemented:
Gulyanitskii, Sergienko and Khodzinskii (1989),
Schwan, Gawkowski and Blake (1988), Schwan et al.
(1989a, b), Kawaguchi and Maeda (1990), McKeown,
Rayward-Smith and Turpin (1991), McKeown et al.
(1991), Rayward-Smith, Rush and McKeown (1991).

Among collegial algorithms, we distinguish be-
tween those that use a coordinator process for com-
munication and load balancing purposes, and those
that are fully distributed (all processes being
identical). Yang and Das (1991) use a coordinator to
implement a static allocation strategy. The coordina-
tor executes a sequential best-first algorithm until
there are N unexamined subproblems. These sub-
problems are then distributed among Nprocesses, each
performing a best-first BB procedure. In Schwan,
Gawkowski and Blake (1988) and Schwan et al. (1989a,
b), the initial allocation strategy is similar, but the al-
gorithm then switches to a dynamic allocation policy on
request. When a process empties its list of unexamined
subproblems, it sends a request to the coordinator
which chooses a busy process and asks it to share work
by sending the subproblem with the smallest lower
bound in the associated work pool. The selection op-
eration used by each process is a mixture of best-first
and depth-first, and is shown to be more efficient than
a pure best-first selection operation, particularly when
the number of processes increases. Experimental
results on an Intel IPSC/1 32-node hypercube are re-
ported for TSP instances with up to 30 cities.

Gendron and Crainic (1993a) present another col-
legial algorithm that uses a coordinator to ease load
balancing and termination detection. The initial allo-
cation strategy consists of a synchronous procedure
which may be seen as a distributed version of
Mohan's SSP algorithm. At each step, p subproblems
are created, one subproblem being assigned to each
working process. After bounding operations are per-
formed, the subproblem with the smallest lower
bound among all evaluated subproblems is deter-
mined in a distributed fashion. Branching is per-
formed on this subproblem and another step is
executed unless the problem is solved or a given
maximum number of steps is attained. The initial
phase is typically run for a small number of steps, and
the algorithm then switches to a completely asynchro-
nous phase, where each working process performs its
own depth-first search of a subtree. During this phase,
when a process runs out of work, it sends a request to

1058 / GENDRON AND CRAINIC

the coordinator, which uses a round robin strategy to
identify a granting process. The coordinator also pe-
riodically receives from each process the number of
subproblems stored in their local memory. This in-
formation is used to eliminate as possible granting
processes those that have insufficient workloads. The
authors report on the results of experiments in solving
the multicommodity location problem with balancing
requirements on two message-passing architectures,
a network of 16 transputers and a distributed system
of five workstations, and show, in particular, that the
initial phase eases load balancing.

In all fully distributed collegial algorithms proposed
in the literature, a dynamic work allocation strategy is
used. According to our classification, we distinguish
between algorithms that use a strategy on request,
without request, or a combined strategy.

Finkel and Manber (1987) propose a distributed
implementation of backtracking, which may be used
for depth-first BB algorithms. Each process performs
its own backtracking procedure. When it runs out of
work, it sends a request to another process. This pro-
cess may be selected randomly, or by using a cyclic
order (assuming there are p processes): Initially,
each process i (1 < i S p) requests work from its
successor, processj = (i modp) + 1. If processj cannot
grant the request, it forwards it to its own successor.
When the request is granted, the successor of process
i becomes the successor of the process that granted the
request. In a variation of this strategy, each process
sending a request to its successor does not wait until the
request is granted. Instead, after a given amount of
time, it sends a request to another process. Strategies
are also tested with regard to the number of subprob-
lems to transfer, and how to select them. The authors
report preliminary results for the TSP (and other back-
tracking applications) on a network of 20 VAX-11/750
computers connected by a ring topology.

Nageshwara Rao and Kumar (1987) present a par-
allel depth-first algorithm, which may be used to im-
plement BB algorithms, and that is similar in many
aspects to that of Finkel and Manber. Initially, one
process starts a depth-first procedure using the orig-
inal problem. When a process has an empty work
pool, it sends a request to another process, the choice
of this process being architecture-dependent (it is as-
sumed that one process is running per processor).
When a process receives a request, it sends about half
of all the nodes that are above a certain "cutoff"
depth (to avoid sending subproblems that can be
solved rapidly). The algorithm was implemented
on two shared-memory systems, the 30-processor
Sequent Balance and the 120-processor BBN

Butterfly, and on a 128-node hypercube message-
passing iPSC architecture, which was also used to
simulate the behavior of 1- and 2-ring topologies
(Kumar, Nageshwara Rao and Ramesh 1988). The
only problem tested was the 15-puzzle problem which
is often used to test the effectiveness of search meth-
ods that arise in artificial intelligence. Kumar and
Nageshwara Rao (1987) analyze theoretically the ef-
ficiency of this general work allocation strategy as a
function of the architecture being used, and evaluate
how the size of the problem, defined as the total
number of generated subproblems (assumed to be
constant), should grow to maintain a given efficiency
when the number of processes is increased. This is
called the isoefficiency measure. The original analysis
was subsequently expanded (Kumar and Nageshwara
Rao 1989, 1990, Grama, Kumar and Nageshwara Rao
1991, Kumar, Grama and Nageshwara Rao 1991), and
the algorithm was tested on many architectures and for
other (not necessarily optimization) problems: The
test pattern generation problem on a 128-processor
Symult s2010 (a 2-D mesh topology) and on a network
of 4 Sun workstations (Arvindam et al. 1991); the
floorplan optimization problem in VLSI circuits on a
1024-node Ncube/10, a 128-processor Symult, and on
a network of 16 Sun workstations (Arvindam, Kumar
and Nageshwara Rao 1989); the tautology verification
problem on the Ncube/2 and the Ncube/10 (Arvindam,
Kumar and Nageshwara Rao 1990, Grama, Kumar
and Nageshwara Rao 1991, Kumar, Grama and
Nageshwara Rao 1991). This algorithmic framework
was also used as a basis for studying the average
speedup that can be obtained, and, in particular, the
occurrence of superlinear speedups (Nageshwara Rao
and Kumar 1988c, 1990). Abdelrahman and Mudge
(1988) propose a collegial algorithm similar to that of
Nageshwara Rao and Kumar, except that each pro-
cess runs a best-first algorithm. It was tested on a
64-processor NCUBE/6 to solve 0-1 ILPP.

Vornberger (1986; see also Monien and Vornberger
1987) presents a distributed collegial algorithm imple-
mented on a ring of sixteen Intel 8088 processors. The
initial allocation strategy has each process building
the same tree until p unexamined subproblems are
available. Each process then selects one subproblem
and starts its own best-first procedure. When its work
pool becomes empty, a process sends a request to its
left neighbor in the ring (one process being run per
processor), which, if its work pool contains "reason-
able" subproblems, gives subproblems to its right
neighbor. A process also probes its neighbor at reg-
ular intervals, by sending the value of its best lower
bound. If the neighbor finds that its own lower bound

GENDRON AND CRAINIC / 1059

is much better, it shares a part of its work pool. Other
collegial distributed algorithms that use an allocation
strategy on request are given by Ma, Tsung and Ma
(1988) and Mans (1992b).

Quinn (1987, 1990) presents several allocation strat-
egies without request for a distributed collegial best-
first algorithm implemented on a hypercube topology.
Initially, one process has the original problem in its
work pool. At every iteration (which consists of a
branching operation on one subproblem and bounding
operations on the newly generated subproblems), each
process sends to one of its neighbors one subproblem
from its work pool according to a given criterion. Four
criteria are proposed: Any one of the newly generated
subproblems; the newly generated subproblem with
the smallest lower bound; the subproblem with the
second smallest lower bound among all subproblems in
the work pool; the subproblem with the smallest lower
bound among all subproblems in the work pool. The
neighbor to which process j (0] j < 2') sends a sub-
problem at iteration i is obtained by inverting bit (i mod
d) ofj. The four strategies were tested on an NCUBE/7
64-node hypercube with ten 30-vertex instances of the
TSP. The third and fourth strategies prove to be best,
because they tend to distribute evenly the amount of
useful work performed by all processes.

Several allocation strategies without request are
proposed by Troya and Ortega (1988, 1989a, b). In
one of them, processes send each of their newly gen-
erated subproblems to a process randomly selected
(see also Felten 1988 who uses the same strategy, and
Karp and Zhang 1988, and Ranade 1990 who propose
theoretical analyses of this load balancing approach).
In other strategies, each newly generated subproblem
is given a value j E {0, 1}; a dichotomous branching
scheme is assumed. One strategy then assigns sub-
problemj to the same process at every iteration, while
another ensures, by a cyclical allocation scheme, that
subproblem j will not be transferred to the same pro-
cess at every iteration. Simulations show that the
random strategy is inferior to the others.

Another type of strategy without request uses in-
formation obtained from other processes to decide on
how to share work units. Vornberger (1987) intro-
duces an allocation scheme in which a process i gives
its best subproblem (a best-first strategy being used)
to each neighbor j at every L iterations, where L
depends on the value of the smallest lower bound
most recently communicated by j. If the best sub-
problem in the work pool of process i has a smaller
value than the one in the work pool of process j, L is
set to a "low" value, otherwise it is set to a "high"
value. Experimental results with ten instances of the

VCP on a network of 32 transputers are presented.
Another strategy without request that uses informa-
tion from other processes to take decisions is pre-
sented by Anderson and Chen (1987).

Luling and Monien (1989) were among the first to
propose a combined strategy. Each process starts
initially with one subproblem and performs a best-first
procedure using the subproblems in its work pool. A
"quality" measure associated with each work pool,
called weight, is used to govern the sharing of work
units among processes. The load balancing strategy
makes use of several parameters that are assigned val-
ues at the beginning and remain fixed during the whole
computation. Experiments with five instances of the
VCP are performed on a network of 60 transputers and
on a ring of 32 transputers. The number of generated
subproblems in the work pool is used to measure the
weight. Kroger and Vornberger (1990) use the same
load-balancing strategy to solve the two-dimensional
cutting stock problem on a network of 32 transputers.
However, the weight is measured differently. Assume
that Q1, . . , Qn are the subproblems in the work pool
of a given process i and best_Z is the best upper bound
known by this process. The weight is then given by w,
= = (bestZ - Z'(Qi))2. The same weight measure is
also used by Luling and Monien (1992) in a subsequent
paper. The authors add some ingredients to their basic
strategy, but their main contribution is to introduce a
controller process that modifies the values of the pa-
rameters during execution. They give results on two
instances of the VCP and three instances of the
weighted VCP on a network of 256 transputers. It re-
sults that this weight measure makes sense only when
the lower bounds are distributed in large intervals, oth-
erwise the number of generated subproblems appears
to be more adequate.

Clausen and Traff (1988, 1991) present two distrib-
uted collegial algorithms for solving the graph parti-
tioning problem. Two different bounding operations
are used, one being qualified as "easy" and generating
large trees, and the other being qualified as "tight"
and generating small trees. Results of experiments on
a 32-node iPSC hypercube reveal that a combined load
balancing technique is more efficient than a strategy
on request. They also show that the easy bounding
operation performs better in a parallel environment
than the tight bounding operation. McKeown et al.
propose another combined work allocation strategy.
A process exhausting its work pool sends a request to
a neighboring process. When a process receives a
request, it sends several subproblems to the request-
ing process if it has (or will soon have) subproblems
in its work pool. Otherwise, it sends a message

1060 / GENDRON AND CRAINIC

indicating that it is idle. In addition to this basic
strategy, each process sends its best subproblem to
a neighboring process (it cycles between e-ach of its
neighbors) every count iterations. Results of experi-
ments with the TSP and the Chinese postman problem
on a network of up to 32 transputers show near-linear
speedups, when the parameter count is adjusted
adequately.

4. CONCLUSION

We have presented a state-of-the-art survey of paral-
lel BB algorithms for solving NP-hard optimization
problems. Our work differs in many aspects from
previous contributions to the area. First, our survey is
more complete and up-to-date. Second, we have pro-
posed a new presentation of the BB algorithm, where
the operations are isolated without specifying any
order for their execution. The usefulness of this ap-
proach has been shown by stating a convergence
theorem based on properties that hold for most exact
sequential and parallel algorithms. Third, we have
proposed a new classification of parallel BB algo-
rithms which differs in many aspects from previous
classifications proposed by Roucairol (1989) and
Trienekens and de Bruin (1992). Roucairol considers
asynchronous algorithms of two types: vertical and
horizontal. Vertical algorithms correspond to the dis-
tributed collegial algorithms of our classification,
while horizontal algorithms correspond to the ASP
class of algorithms. Trienekens and de Bruin classify
algorithms by using the notion of knowledge base,
which is an entity that may contain, among other
things, generated subproblems (examined or not), up-
per bounds, and feasible solutions found by the algo-
rithm. The basic difference between this notion and
our notion of work pool, is that a work pool contains
only generated subproblems that are awaiting some
treatment, while a knowledge base may contain any
knowledge generated by the algorithm.

With regard to the design of BB algorithms for
solving a given problem on particular parallel archi-
tectures, we can draw the following conclusions:

* Implementations on massively parallel fine-grained
SIMD machines are appropriate only for problems
with trivial bounding operations performed in con-
stant time.

* Synchronization appears unnecessary in most
cases.

* ASP algorithms are appropriate only for problems
with a nontrivial bounding operation, and parallel
architectures having a relatively small number of
processors.

* Implementations of ASP algorithms on shared-
memory architectures should benefit from the work
of Nageshwara Rao and Kumar (1988a, b) and Le
Cun, Mans and Roucairol (1993) on concurrent pri-
ority queue data structures, and of Pekny and Miller
(1992) on two-list implementations.

* In AMP algorithms, dynamic combined strategies
appear most promising for allocating work units
among processes. In particular, the notion of
weight of a work pool, introduced by Luling and
Monien (1989), seems particularly useful.

* In AMP algorithms, a mixed organization scheme
for the location of work pools appears to be an
attractive alternative to a collegial approach, par-
ticularly if the global work pool is used to improve
the search for an optimal solution.

As possible extensions to the present study, we
suggest the following:

* Study the impact of parallelism of type 3, particu-
larly along the lines suggested by Miller and Pekny
(1993), the idea being to use parallelism to diversify
the search.

* Study algorithmic schemes that combine the three
types of parallelism.

* Perform comparative studies of single pool and
multiple pool algorithms for several problems (see,
in particular, the pioneering work of McKeown et
al. on the implementation of kernels on transputer
networks).

* Perform comparative studies of several initial work
allocation strategies.

* Implement new schemes for the dynamic allocation
of work units, and perform comparative studies of
them.

ACKNOWLEDGMENT

Financial support for this project was provided by
the N.S.E.R.C. of Canada and the Fonds F.C.A.R.
of the Province of Que6bec. Special thanks are due to
Sylvie Hetu for her help in building the bibliography.

REFERENCES

ABDELRAHMAN, T. S. 1988. Parallel Best-First Branch
and Bound Algorithms on Distributed Memory Mul-
tiprocessors. Ph.D. Thesis, University of Michigan,
Ann Arbor.

ABDELRAHMAN, T. S., AND T. N. MUDGE. 1988. Parallel
Branch-and-Bound Algorithms on Hypercube
Multiprocessors. In Proceedings of the Third
Conference on Hypercube Concurrent Computers
and Applications, Vol. II: Applications, 1492-1499.

GENDRON AND CRAINIC / 1061

AGIN, N. 1966. Optimum Seeking With Branch-and-
Bound. Mgmt. Sci. 13, B-176-B-185.

ALTMANN, E., T. A. MARSLAND AND T. BREIKREUTZ.
1988. Accounting for Parallel Tree Search Over-
heads. In Proceedings of the 1988 International
Conference on Parallel Processing, 198-201.

ANANTH, G. Y., V. KUMAR AND P. M. PARDALOS. 1993.
Parallel Processing of Discrete Optimization Prob-
lems. In Encyclopedia on Microcomputers. Marcel
Dekker.

ANDERSON, S., AND M. C. CHEN. 1987. Parallel Branch-
and-Bound Algorithms on the Hypercube. In
Hypercube Multiprocessors, M. T. Heath (ed.).
SIAM Press, Philadelphia, 309-317.

ARVINDAM, S., V. KUMAR AND V. NAGESHWARA RAO.
1989. Floorplan Optimization on Multiprocessors.
In Proceedings of IEEE International Conference
on Computer Design, 109-114.

ARVINDAM, S., V. KUMAR AND V. NAGESHWARA RAO.

1990. Efficient Parallel Algorithms for Search Prob-
lems: Applications to VLSI CAD. In Proceedings of
the Third Symposium on the Frontiers of Massively
Parallel Computation, 166-169.

ARVINDAM, S., V. KUMAR, V. NAGESHWARA RAO AND V.

SINGH. 1991. Automatic Test Pattern Generation on
Parallel Processors. Paral. Comput. 17, 1323-1342.

BALAS, E. 1968. A Note on the Branch-and-Bound Prin-
ciple. Opns. Res. 16, 442-445.

BALAS, E., D. MILLER, J. PEKNY AND P. Toni. 1991. A
Parallel Shortest Augmenting Path Algorithm for the
Assignment Problem. J. ACM 38, 985-1004.

BARR, R. S., AND B. L. HICKMAN. 1993. Reporting Com-
putational Experiments With Parallel Algorithms:
Issues, Measures and Experts' Opinions. ORSA J.
Comput. 5, 2-18.

BARR, R. S., AND W. STRIPLING. 1992. A Parallel Mixed-
Strategy Branch-and-Bound Approach to the Fixed-
Charge Transportation Problem. Technical Report
92-CSE-19, Department of Computer Science and
Engineering, Southern Methodist University,
Dallas, Texas.

BERTIER, P., AND B. Roy. 1964. Procedure de resolution
pour une classe de problemes pouvant avoir un
caractere combinatoire. Cahiers du Centre d'etudes
de recherche operationnelle 6(4), 202-208.

BERTSEKAS, D. P., AND J. N. TsITSIKLIS. 1989. Parallel
and Distributed Computation, Numenical Methods.
Prentice-Hall, Englewood Cliffs, N. J.

BOEHNING, R. L., R. M. BUTLER AND B. E. GILLETr.
1988. A Parallel Integer Linear Programming Algo-
rithm. Eur. J. Opnl. Res. 34, 393-398.

BOXMA, 0. J., AND G. A. P. KINDERVATER. 1991. A
Queueing Network Model for Analyzing a Class of
Branch-and-Bound Algorithms on a Master-Slave
Architecture. Opns. Res. 39, 1005-1017.

BURTON, F. W., G. P. McKEoWN, V. J. RAYWARD-SMITH
AND M. R. SLEEP. 1982. Parallel Processing and

Combinatorial Optimization, Combinatorial Opti-
mization III, L. B. Wilson, C. S. Edwards and V. J.
Rayward-Smith (eds.). University of Stirling, U.K.,
19-36.

BURTON, F. W., M. M. HUNTBACH, G. P. McKEoWN AND

V. J. RAYWARD-SMITH. 1983. Parallelism in Branch-
and-Bound Algorithms. Internal Report CSA/3/
1983, School of Computing Studies and
Accountancy, University of East Anglia, Norwich,
U.K.

CANNON, T. L. 1988. Large-Scale Zero-One Linear Pro-
gramming on Distributed Workstations. Ph.D. The-
sis, Department of Operations Research and
Applied Statistics, George Mason University,
Fairfax, Virginia.

CANNON, T. L., AND K. L. HOFFMAN. 1990. Large-Scale
0-1 Linear Programming on Distributed Worksta-
tions. Ann. Opns. Res. 22, 181-217.

CHENG, K. H., AND Q. WANG. 1990. An Asynchronous
Multiprocessor Design for Branch-and-Bound Algo-
rithms. In Proceedings of the Frontiers of Massively
Parallel Computation, 65-68.

CLAUSEN, J., AND J. L. TRAFF. 1988. Parallel Graph Par-
titioning Using Branch-and-Bound With Dynamic
Distribution of Subproblems. DIKU Report 88/18,
Department of Computer Science, University of
Copenhagen, Denmark.

CLAUSEN, J., AND J. L. TRAFF. 1991. Implementations of
Parallel Branch-and-Bound Algorithms-Experi-
ences With the Graph Partitioning Problem. Anns.
Opns. Res. 33, 331-349.

DE BRUIN, A., A. H. G. RINNOOY KAN AND H. W. J. M.
TRIENEKENS. 1988. A Simulation Tool for the Per-
formance of Parallel Branch and Bound Algorithms.
Math. Prog. 42, 245-271.

DEHNE, F., A. G. FERREIRA AND A. RAU-CHAPLIN. 1989a.
Parallel Branch-and-Bound on Fine-Grained Hyper-
cube Multiprocessors. Tools for Artif. Intell.,
616-622.

DEHNE, F., A. G. FERREIRA AND A. RAU-CHAPLIN. 1989b.
Parallel Branch-and-Bound on Fine-Grained Hyper-
cube Multiprocessors. Paral. Comput. 15, 201-209.

DESMU, B. C. 1977. A Parallel Processing System to Solve
0-1 Programming Problem. Ph.D. Thesis, McGill
University, Montreal, Canada.

DESAI, B. C. 1978. The BPU: A Staged Parallel Process-
ing System to Solve the Zero-One Problem. In Pro-
ceedings of ICS, Taipei, Taiwan, December 1978,
802-817.

DESAI, B. C. 1979. A Parallel Microprocessing System.
In Proceedings of the 1979 International Confer-
ence on Parallel Processing, p. 136.

DE WIT-, D., R. FINKEL AND R. SOLOMON. 1984. The
Crystal Multicomputer: Design and Implementation
Experience. IEEE Trans. Soft. Engin. SE-13,
953-967.

1062 / GENDRON AND CRAINIC

DIJKSTRA, E. W., AND C. S. SHOLTEN. 1980. Termination
Detection for Diffusing Computations. Infor. Proc.
Letts. 11, 1-4.

ECKSTEIN, J. 1994a. Large-Scale Parallel Computing,
Optimization, and Operations Research: A Survey.
ORSA CSTS Newsletter 14, (2), 1-28.

ECKSTEIN, J. 1994b. Parallel Branch-and-Bound Algo-
rithms for General Mixed Integer Programming on
the CM-5. Technical Report TMC-257, SL4M J.
Optim. (to appear).

ECKSTEIN, J. 1994c. Parallel Branch-and-Bound for Mixed
Integer Programming. SL4M News 27(1), 12-15.

EL-DESSOUKI, 0. I., AND W. H. HUEN. 1980. Distributed
Enumeration on Network Computers. IEEE Trans.
Comput. C-29, 818-825.

FELTEN, E. W. 1988. Best-First Branch-and-Bound on a
Hypercube. In Proceedings of the Third Conference
on Hypercube Concurrent Computers and Applica-
tions, Vol. II: Applications, 1500-1504.

FINKEL, R., AND U. MANBER. 1987. DIB-A Distributed
Implementation of Backtracking. ACM Trans.
Prog. Lang. and Syst. 9(2), 235-256.

FLYNN, M. J. 1966. Very High-Speed Computing Sys-
tems. Proc. IEEE 54, 1901-1909.

Fox, B. L., J. K. LENSTRA, A. H. G. RINNOoY KAN AND
L. E. SCHRAGE. 1978. Branching From the Largest
Upper Bound: Folklore and Facts. Eur. J. Opnl.
Res. 2, 191-194.

FULLER, S. H., J. K. OUSTERHOUT, L. RASKIN, P. I.
RUBINFELD, P. J. SINDHU AND R. J. SWAN. 1978.
Multi-Microprocessors: An Overview and Working
Example. Proc. IEEE 66(2), 216-228.

GENDRON, B. 1991. Implantations paralleles d'un algo-
rithme de separation et evaluation progressive pour
resoudre le probleme de localisation avec
equilibrage, M.Sc. Thesis, Publication No. 761,
Centre de recherche sur les transports, University
of Montreal, Canada.

GENDRON, B., AND T. G. CRAINIC. 1993a. A Parallel
Branch-and-Bound Algorithm for Multicommodity
Uncapacitated Location With Balancing Require-
ments. Publication No. 924, Centre de recherche sur
les transports, University of Montreal, Canada.

GENDRON, B., AND T. G. CRAINIC. 1993b. Parallel Imple-
mentations of a Branch-and-Bound Algorithm for
Multicommodity Location With Balancing Require-
ments, INFOR 31(3), 151-165.

GEOFFRION, A. M., AND R. E. MARSTEN. 1972. Integer
Programming: A Framework and State-of-the-Art
Survey. Mgmt. Sci. 18, 465-491.

GRAMA, A., V. KUMAR AND V. NAGESHWARA RAo. 1991.
Experimental Evaluation of Load Balancing Tech-
niques for the Hypercube. Proceedings of the Par-
allel Computing 91 Conference, 497-514.

GRAMA, A. Y., V. KuMAR AND P. M. PARDALOS. 1993.
Parallel Processing of Discrete Optimization

Problems. In Encyclopedia of Microcomputers,
Marcel Dekker, New York, 129-147.

GULYANITSKII, L. F., I. V. SERGIENKO AND A. N.
KHODZINSKII. 1989. Discrete Optimization Methods
for Multiprocessor Computer Systems. Cybernetics
24, 418-427.

HARRIS, J. A., AND D. R. SMITH. 1977. Hierarchical Mul-
tiprocessor Organizations. Proceedings of the 4th
Annual Symposium on Computer Architecture,
41-48.

HUANG, S.-R., AND L. DAVIS. 1987. A Tight Upper
Bound for the Speedup of Parallel Best-First
Branch-and-Bound Algorithms. Technical Report,
Center on Automation Research, University of
Maryland, College Park.

IBARAKI, T. 1977. The Power of Dominance Relations
in Branch-and-Bound Algorithms. J. ACM 24,
264-279.

IBARAKI, T. 1987. Enumerative Approaches to Combi-
natorial Optimization. Anns. Opns. Res., 10-11.

IMAI, M., T. FUKUMURA AND Y. YOSHIDA. 1979. A Par-
allelized Branch-and-Bound Algorithm, Implemen-
tation and Efficiency. Syst. Comput. Controls 10(3),
62-70.

IMAI, M., Y. YOSHIDA AND T. FUKUMURA. 1979. A Par-
allel Searching Scheme for Multiprocessor Systems
and its Application to Combinatorial Problems. Pro-
ceedings of the Sixth InternationalJoint Conference
on Artificial Intelligence, 416-418.

JANAKIRAM, V. K., D. P. AGRAWAL AND R. MEHROTRA.

1988a. A Randomized Parallel Branch-and-Bound
Algorithm. Proceedings of the 1988 International
Conference on Parallel Processing, Vol. III: Algo-
rithms and Applications, 69-75.

JANAKIRAM, V. K., D. P. AGRAWAL AND R. MEHROTRA.

1988b. A Randomized Parallel Backtracking
Algorithm. IEEE Trans. Comp. 37(12), 1665-1676.

JANAKIRAM, V. K., E. F. GEHRINGER, D. P. AGRAWAL
AND R. MEHROTRA. 1988. A Randomized Parallel
Branch-and-Bound Algorithm. Int. J. Paral. Prog.
17(3), 277-301.

JANSEN, J. M., AND F. W. SIJSTERMANS. 1989. Parallel
Branch-and-Bound Algorithms. Future Generation
Comp. Syst. 4, 271-279.

KARP, R. M., AND Y. ZHANG. 1988. A Randomized Par-
allel Branch-and-Bound Procedure. Proceedings of
the Twentieth Annual ACM Symposium on Theory
of Computing, 290-300.

KAWAGUCHI, T., AND T. MAEDA. 1990. A Parallel Branch-
and-Bound Algorithm for a Torus Machine. Syst.
and Comp. in Japan 21(3), 101-108.

KINDERVATER, G. A. P. 1989. Exercises in Parallel Com-
binatorial Computing. Ph.D. Thesis, Centre for
Mathematics and Computer Science, Amsterdam.

KINDERVATER, G. A. P., AND J. K. LENSTRA. 1985. Par-
allel Algorithms. In Combinatorial Optimization:
Annotated Bibliographies, M. O'hEigeartaigh, J. K.

GENDRON AND CRAINIC / 1063

Lenstra and A. H. G. Rinnooy Kan (eds.). John
Wiley, New York, 106-128.

KINDERVATER, G. A. P., AND J. K. LENSTRA. 1986. An
Introduction to Parallelism in Combinatorial Opti-
mization. Discr. Appl. Math. 14, 135-156.

KINDERVATER, G. A. P., AND J. K. LENSTRA. 1988. Par-
allel Computing in Combinatorial Optimization.
Anns. Opns. Res. 14, 245-289.

KINDERVATER, G. A. P., AND H. W. J. M. TRIENEKENS.
1988. Experiments With Parallel Algorithms for
Combinatorial Problems. Eur. J. Opnl. Res. 33,
65-81.

KOHLER, W. H., AND K. STEIGLITZ. 1974. Characteriza-
tion and Theoretical Comparison of Branch-and-
Bound Algorithms for Permutation Problems. J.
ACM 21(1), 140-156.

KOHLER, W. H., AND K. STEIGLITZ. 1976. Enumerative
and Iterative Computational Approaches. In
Computer and Job-Shop Scheduling Theory, E. G.
Coffman, Jr. (ed.). John Wiley, New York, 229-287.

KROGER, B., AND 0. VORNBERGER. 1990. A Parallel
Branch-and-Bound Approach for Solving a
Two-Dimensional Cutting Stock Problem. Techni-
cal Report, Department of Mathematics and
Computer Science, University of Osnabruck,
Germany.

KUDVA, G. K., AND J. F. PEKNY. 1993. A Distributed
Exact Algorithm for the Multiple Resource Con-
strained Sequencing Problem. Anns. Opns. Res. 42,
25-54.

KUMAR, V., A. GRAMA AND V. NAGESHWARA RAO. 1991.
Scalable Load Balancing Techniques for Parallel
Computers. Technical Report TR-91-55, Computer
Science Department, University of Minnesota,
Minneapolis.

KUMAR, V., AND L. N. KANAL. 1984. Parallel Branch-
and-Bound Formulations for AND/OR Tree Search.
IEEE Trans. Pattern Anal. and Mach. Intel. PAMI-
6(6), 768-778.

KUMAR, V., AND V. NAGESHWARA RAo. 1987. Parallel
Depth First Search. Part II. Analysis. Int. J. Paral.
Prog. 16(6), 501-519.

KUMAR, V., AND V. NAGESHWARA RAo. 1989. Load Bal-
ancing on the Hypercube Architecture. Proceedings
of the 1989 Conference on Hypercubes, Concurrent
Computers and Applications, 603-608.

KUMAR, V., AND V. NAGESHWARA RAO. 1990. Scalable
Parallel Formulations of Depth-First Search. In Par-
allel Algorithms for Machine Intelligence and Vi-
sion, V. Kumar, P. S. Gopalakrishnan and L. Kanal
(eds.). Springer-Verlag, New York, 1-41.

KUMAR, V., V. NAGESHWARA RAO AND K. RAMESH. 1988.
Parallel Depth First Search on the Ring Architec-
ture. Technical Report TR-88-16, Department of
Computer Sciences, The University of Texas at
Austin.

KUMAR, V., K. RAMESH AND V. NAGESHWARA RAo. 1988.
Parallel Best-First Search of State-Space Graphs: A
Summary of Results. Proceedings of the Seventh
National Conference on Artificial Intelligence 1,
122-127.

LAI, T.-H., AND S. SAHNI. 1982. Anomalies in Parallel
Branch-and-Bound Algorithms. Technical Report,
University of Minnesota, Minneapolis.

LAI, T.-H., AND S. SAHNI. 1983. Anomalies in Parallel
Branch-and-Bound Algorithms. Proceedings of the
1983 Intenational Conference on Parallel Process-
ing, 183-190.

LAI, T.-H., AND S. SAHNI. 1984. Anomalies in Parallel
Branch-and-Bound Algorithms. Commun. ACM 27,
594-602.

LAI, T.-H., AND A. SPRAGUE. 1985a. Performance of
Parallel Branch-and-Bound Algorithms. Proceed-
ings of the 1985 International Conference on Par-
allel Processing, 194-201.

LAI, T.-H., AND A. SPRAGUE. 1985b. Performance of
Parallel Branch-and-Bound Algorithms. IEEE
Trans. Comp. vol. C-34962-964.

LAI, T.-H., AND A. SPRAGUE. 1986. A Note on Anomalies
in Parallel Branch-and-Bound Algorithms With
One-to-One Bounding Functions. Infor. Proc.
Letts. 23, 119-122.

LAURSEN, P. S. 1991. New Parallel Branch and Bound for
the Quadratic Assignment Problem. Master Thesis,
DIKU-Report 91-9-7, Department of Computer In
Science, University of Copenhagen, Denmark.

LAURSEN, P. S. 1993a. Simple Approaches to Parallel
Branch and Bound. Paral. Comput. 19, 143-152.

LAURSEN, P. S. 1993b. A Parallel Branch and Bound
Algorithm With Synchronized Communication. Re-
search Report, Department of Computer Science,
University of Copenhagen, Denmark.

LAURSEN, P. S. 1994. Can Parallel Branch and Bound
Without Communication be Effective? SL4M J.
Optim. 4(2), 288-296.

LAVALLEE, I., AND C. RoUCAIROL. 1985. Parallel Branch
and Bound Algorithms. Rapport Interne MASI No.
112, Universite Paris VI.

LAWLER, E. L., AND D. E. WOOD. 1966. Branch-and-
Bound Methods: A Survey. Opns. Res. 14, 699-719.

LE CUN, B., B. MANS AND C. ROUCAIROL. 1993. Com-
parison of Some Concurrent Priority Queues for
Branch and Bound Algorithms. Working Paper,
INRIA, France.

Li, G.-J. 1985. Parallel Processing of Combinatorial
Search Problems. Ph.D. Thesis, Purdue University,
West Lafayette, Indiana.

Li, G.-J., AND B. W. WAH. 1984a. Computational Effi-
ciency of Parallel Approximate Branch-and-Bound
Algorithms. Technical Report TR-84-6, School of
Electrical Engineering, Purdue University, West
Lafayette, Indiana.

1064 / GENDRON AND CRAINIC

Li, G.-J., AND B. W. WAH. 1984b. Computational
Efficiency of Parallel Approximate Branch-and-
Bound Algorithms. Proceedings of the 1984
International Conference on Parallel Processing,
473-480.

Li, G.-J., AND B. W. WAH. 1984c. How to Cope With
Anomalies in Parallel Approximate Branch-and-
Bound Algorithms. Proceedings of the National
Conference on Artificial Intelligence, 212-215.

Li, G.-J., AND B. W. WAH. 1986a. Coping With Anom-
alies in Parallel Branch-and-Bound Algorithms.
IEEE Trans. Comp. C-35(6), 568-573.

Li, G.-J., AND B. W. WAH. 1986b. How Good Are Par-
allel and Ordered Depth-First Searches? Proceed-
ings of the 1986 International Conference on
Parallel Processing, 992-999.

Li, G.-J., AND B. W. WAH. 1990. Computational Effi-
ciency of Parallel OR-Tree Searches. IEEE Trans.
Soft. Engin. 16, 13-31.

Li, Y., AND P. M. PARDALOS. 1992. Parallel Algorithms
for the Quadratic Assignment Problem. In Ad-
vances in Optimization and Parallel Computing,
P. M. Pardalos (ed.). Elsevier Science Publishers,
177-189.

LULING, R., AND B. MONIEN. 1989. Two Strategies for
Solving the Vertex Cover Problem on a Transputer
Network. Third International Workshop on Distrib-
uted Algorithms, Lecture Notes in Computer Sci-
ence, No. 392, 160-170.

LULING, R., AND B. MONIEN. 1992. Load Balancing for
Distributed Branch and Bound Algorithms. Pro-
ceedings of the Sixth International Parallel Process-
ing Symposium, 543-548.

MA, R. P., F.-S. TSUNG AND M. -H. MA. 1988. A Dynamic
Load Balancer for a Parallel Branch and Bound
Algorithm. Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applica-
tions, Vol. II: Applications, 1505-1513.

MANS, B. 1992a. Contribution a l'algorithmique non nu-
merique parall/le: parallelisation de methodes de
recherche arborescentes. Ph.D. Thesis, Universite
Paris VI, Paris, France.

MANS, B. 1992b. Un algorithme d'equilibrage de charge
dynamique et autoadaptatif pour le branch and
bound. Technical Report MASI 92.67, Laboratoire de
Methodologie et Architecture des Systemes Informa-
tiques, Institut Blaise Pascal, Paris, France.

MANS, B., AND C. ROUCAIROL. 1993. Performances of
Parallel Branch-and-Bound Algorithms With
Best-First Search. Working Paper, INRIA-MASI,
Paris, France.

MANS, B., T. MAUTOR AND C. RoUCAIROL. 1993. A Par-
allel Depth First Search Branch and Bound for the
Quadratic Assignment Problem. Working Paper,
INRIA-MASI, Paris, France.

MCKEOWN, G. P., V. J. RAYWARD-SMITH AND H. J.
TURPIN. 1991. Branch-and-Bound as a Higher-Order
Function. Anns. Qpns. Res. 33, 379-402.

McKEowN, G. P., V. J. RAYWARD-SMITH, S. A. RUSH AND

H. J. TURPIN. 1991. Jsing a Transputer Network to
Solve Branch-and-Bound Problems. Transputing
91, Proceedings of the World Transputer User
Group Conference, 781-800.

MILLER, D. L., AND J. F. PEKNY. 1989. Results From a
Parallel Branch-and-Bound Algorithm for the
Asymmetric Traveling Salesman Problem. 0. R.
Letts. 8, 129-135.

MILLER, D. L., AND J. F. PEKNY. 1993. The Role of
Performance Metrics for Parallel Mathematical Pro-
gramming Algorithms. ORSA J. Comput. 5, 26-28.

MITrEN, L. G. 1970. Branch-and-Bound Methods: Gen-
eral Formulation and Properties. Opns. Res. 18,
24-34.

MOHAMED, R. A. K. 1992. Parallel Branch and Bound for
Mixed Integer Programming. Technical Report 92-
CSE-10, Department of Computer Science and
Engineering, Southern Methodist University,
Dallas, Texas.

MoHAN, J. 1982. A Study in Parallel Computation: The
Traveling Salesman Problem. Report CMU-CS-82-
136(R), Computer Science Department, Carnegie-
Mellon University, Pittsburgh, Penn.

MOHAN, J. 1983. Experience With Two Parallel Pro-
grams Solving the Traveling Salesman Problem.
Proceedings of the 1983 International Conference
on Parallel Processing, 191-193.

MOHAN, J. 1984. Performance of Parallel Programs:
Model and Analyses. Ph.D. Thesis, Computer
Science Department, Carnegie-Mellon University,
Pittsburgh, Penn.

M0LLER-NIELSEN, P., AND J. STAUNSTRUP. 1984. Exper-
iments With a Multiprocessor. Report DAIMI PB-
185, Computer Science Department, Aarhus
University, Aarhus, Denmark.

MONIEN, B., AND 0. VORNBERGER. 1987. Parallel Pro-
cessing of Combinatorial Search Trees. Proceedings
of the International Workshop on Parallel Algo-
rithms and Architectures, Lecture Notes in Com-
puter Science, No. 269, 60-69.

MRAz, R. T., AND W. D. SEWARD. 1987. Performance
Evaluation of Parallel Branch-and-Bound Search
With the Intel iPSC Hypercube Computer. Proceed-
ings of Supercomputing '87 III, 82-91.

NAGESHWARA RAO, V., AND V. KUMAR. 1987. Parallel
Depth First Search. Part I. Implementation. Int. J.
Paral. Prog. 16(6), 479-499.

NAGESHWARA RAO, V., AND V. KUMAR. 1988a. Concur-
rent Insertions and Deletions in a Priority Queue.
Proceedings of the 1988 Intemational Conference
on Parallel Processing, Vol. III: Algorithms and
Applications, 207-211.

GENDRON AND CRAINIC / 1065

NAGESHWARA RAO, V., AND V. KUMAR. 1988b. Concur-
rent Access of Priority Queues. IEEE Trans. Comp.
37(12), 1657-1665.

NAGESHWARA RAO, V., AND V. KuMAR. 1988c. Super-
linear Speedup in State-Space Search. Proceedings
of the 1988 Conference on Foundations of Software
Technology and Theoretical Computer Science,
Lecture Notes in Computer Science, No. 338.

NAGESHWARA RAO, V., AND V. KUMAR. 1990. On the
Efficiency of Parallel Depth-First Search. Technical
Report TR-90-55, Computer Science Department,
University of Minnesota, Minneapolis.

NAU, D. S., V. KUMAR AND L. KANAL. 1984. General
Branch-and-Bound, and its Relation to A* and AO*.
Artif: Intel. 23, 29-58.

NEMHAUSER, G. L., AND L. A. WOLSEY. 1988. Integer and
Combinatorial Optimization. John Wiley, New York.

PARDALOS, P. M. (ED.). 1992. Advances in Optimization
and Parallel Computing. North-Holland,
Amsterdam.

PARDALOS, P. M., AND J. V. CROUSE. 1989. A Parallel
Algorithm for the Quadratic Assignment Problem.
Proceedings of Supercomputing '89, 351-360.

PARDALOS, P. M., AND G. P. RODGERS. 1989. Parallel
Branch and Bound Algorithms for Unconstrained
Quadratic Zero-One Programming. In Impacts of
Recent Computer Advances on Operations Re-
search, R. Sharda, B. L. Golden, E. Wasil, 0. Balci
and W. Stewart (eds.). Elsevier Science Publishing,
144-157.

PARDALOS, P. M., AND G. P. RODGERS. 1990. Parallel
Branch-and-Bound Algorithms for Quadratic
Zero-One Programs on the Hypercube Architec-
ture. Anns. Opns. Res. 22, 271-292.

PARDALOS, P., AND X. Li. 1990. Parallel Branch-and-
Bound Algorithms for Combinatorial Optimization.
Supercomputer 7(5), 23-30.

PARDALOS, P. M., A. T. PHILLIPS AND J. B. ROSEN. 1992.
Topics in Parallel Computing in Mathematical Pro-
gramming. Science Press, New York.

PARGAS, R. P., ANDE . D. WOOSTER. 1988. Branch-and-
Bound Algorithms on a Hypercube. Proceedings of
the Third Conference on Hypercube Concurrent
Computers and Applications, Vol. II: Applications,
1514-1519.

PEKNY, J. F. 1989. Exact Parallel Algorithms for Some
Members of the Traveling Salesman Problem Fam-
ily. Ph.D. Thesis, Carnegie-Mellon University,
Pittsburgh, Penn.

PEKNY, J. F., AND D. L. MILLER. 1990. A Parallel
Branch-and-Bound Algorithm for Solving Large
Asymmetric Traveling Salesman Problems. Pro-
ceedings of the ACM Eighteenth Annual Computer
Science Conference, 56-62.

PEKNY, J. F., AND D. L. MILLER. 1992. A Parallel
Branch-and-Bound Algorithm for Solving Large

Asymmetric Traveling Salesman Problems. Math.
Prog. 55, 17-33.

PLATEAU, G., AND C. RoUCAIROL. 1989. A Supercom-
puter Algorithm for the 0-1 Multiknapsack Prob-
lem. In Impacts of Recent Computer Advances on
Operations Research, R. Sharda, B. L. Golden, E.
Wasil, 0. Balci and W. Stewart (eds.). Elsevier
Science Publishing, 144-157.

PRUUL, E. 1975. Parallel Processing and a Branch-and-
Bound Algorithm. M.Sc. Thesis, School of Opera-
tions Research and Industrial Engineering, Cornell
University, Ithaca, N. Y.

PRUUL, E., G. L. NEMHAUSER AND R. A. RUSHMEIER.

1988. Branch-and-Bound and Parallel Computation:
A Historical Note. 0. R. Letts. 7, 65-69.

QUINN, M. J. 1983. On the Speedup of Parallel
Depth-First Branch-and-Bound Algorithms. Tech-
nical Report 83-9, Department of Computer
Science, University of New Hampshire, Durham,
N. H.

QUINN, M. J. 1987. Implementing Best-First Branch-and-
Bound Algorithms on Hypercube Multicomputers.
In Hypercube Multiprocessors, M. T. Heath (ed.).
SIAM Press, Philadelphia, 318-326.

QUINN, M. J. 1990. Analysis and Implementation of
Branch-and-Bound Algorithms on a Hypercube
Multicomputer. IEEE Trans. Comp. 39(3), 384-387.

QUINN, M. J., AND N. DEO. 1983. An Upper Bound for
the Speedup of Parallel Branch-and-Bound Algo-
rithms. Proceedings of the Third Conference on
Foundations of Software Technology and Theoret-
ical Computer Science, 488-504.

QUINN, M. J., AND N. DEO. 1986. An Upper Bound for
the Speedup of Parallel Best-Bound Branch-and-
Bound Algorithms. BIT 26, 35-43.

RANADE, A. 1990. A Simpler Analysis of the Karp-Zhang
Parallel Branch-and-Bound Method. Report UCB/
CSD 90/586, Computer Science Division,
University of California at Berkeley, California.

RAYWARD-SMITH, V. J., S. A. RUSH AND G. P. McKEOWN.
1993. Efficiency Considerations in the Implementa-
tion of Parallel Branch-and-Bound. Anns. Opns.
Res. 43, 123-145.

RIBEIRO, C. C. 1987. Parallel Computer Models and
Combinatorial Algorithms. Anns. Discr. Math. 31,
325-364.

RINNOoY KAN, A. H. G. 1976. On Mitten's Axioms for
Branch and Bound. Opns. Res. 24, 1176-1178.

RODGERS, G. 1989. Algorithms for Unconstrained Qua-
dratic Zero-One Programming on Contemporary
Computer Architectures. Ph.D. Thesis, The
Pennsylvania State University, University Park,
Penn.

ROST, J., AND E. MAEHLE. 1988. Implementation of a
Parallel Branch-and-Bound Algorithm for the Trav-
eling Salesman Problem. Proceedings of CONPAR
88, 152-159.

1066 / GENDRON AND CRAINIC

ROUCAIROL, C. 1987a. Du sequentiel au paralleie: la
recherche arborescente et son application a' la pro-
grammation quadratique en variables 0-1. These
d'1Etat, Universite Paris VI, France.

ROUCAIROL, C. 1987b. A Parallel Branch-and-Bound Al-
gorithm for the Quadratic Assignment Problem.
Discr. Appl. Math. 18, 211-225.

ROUCAIROL, C. 1989a. Parallel Branch-and-Bound Algo-
rithms-An Overview. In Parallel and Distributed
Algorithms, M. Cosnard, Y. Robert, P. Quinton and
M. Raynal (eds.). Elsevier Science Publishers,
Amsterdam, 153-163.

ROUCAIROL, C. 1989b. Parallel Computing in Combina-
torial Optimization. Comp. Phys. Reps. 11,
195-220.

SCHWAN, K., J. GAWKOWSKI AND B. BLAKE. 1988. Pro-
cess and Workload Migration for a Parallel Branch-
and-Bound Algorithms on a Hypercube
Multicomputer. Proceedings of the Third Confer-
ence on Hypercube Multiprocessors, Vol. II:Appli-
cations, 1520-1530.

SCHWAN, K., B. BLAKE, W. Bo AND J. GAWKOWSKI.
1989a. Global Data and Control in Multicomputers:
Operating System Primitives and Experimentation
With a Parallel Branch-and-Bound Algorithm.
Concurrency: Prac. and Exper. 1(2), 191-218.

SCHWAN, K., W. Bo, B. BLAKE AND J. GAWKOWSKI.
1989b. OS Primitives for the Implementation of Dis-
tributed Objects in Multicomputers: Experimenta-
tion With a Parallel Branch-and-Bound Algorithm.
Proceedings of the Fourth Conference on Hyper-
cubes, Concurrent Computers, and Applications,
Vol. II, 785-791.

SEKIGUCHI, Y. 1981. A Unifying Framework of Combi-
natorial Optimization Algorithms: Tree Program-
ming and its Validity. J. Opns. Res. Soc. Japan
24(1), 67-93.

TRELEAVEN, P. C., D. R. BROWNBRIDGE AND R. P.
HOPKINS. 1982. Data-Driven and Demand-Driven
Computer Architectures. ACM Comput. Surv. 14,
93-143.

TRIENEKENS, H. W. J. M. 1986. Parallel Branch and
Bound on an MIMD System. Report 8640/A,
Econometric Institute, Erasmus University,
Rotterdam, The Netherlands.

TRIENEKENS, H. W. J. M. 1989a. Parallel Branch and
Bound and Anomalies. Report EUR-CS-89-01,
Computer Science Department, Faculty of
Economics, Erasmus University, Rotterdam, The
Netherlands.

TRIENEKENS, H. W. J. M. 1989b. Computational Exper-
iments With an Asynchronous Parallel Branch and
Bound Algorithm. Report EUR-CS-89-02, Computer
Science Department, Faculty of Economics,
Erasmus University, Rotterdam, The Netherlands.

TRIENEKENS, H. W. J. M. 1990. Parallel Branch and
Bound Algorithms. Ph.D. Thesis, Erasmus
University, Rotterdam, The Netherlands.

TRIENEKENS, H. W. J. M., AND A. DE BRUIN. 1992. To-
wards a Taxonomy of Parallel Branch and Bound
Algorithms. Report EUR-CS-92-01, Computer
Science Department, Faculty of Economics,
Erasmus University, Rotterdam, The Netherlands.

TROYA, J., AND M. ORTEGA. 1988. A Parallel Best Bound
First Branch-and-Bound Scheme. Mini and Micro-
comp. and TheirApplic. 509-512.

TROYA, J., AND M. ORTEGA. 1989a. Live Nodes Distri-
bution in Parallel Branch-and-Bound Algorithms.
Microproc. and Microprog. 25, 301-306.

TROYA, J., AND M. ORTEGA. 1989b. A Study of Parallel
Branch-and-Bound Algorithms With Best-Bound-
First Search. Paral. Comput. 11, 121-126.

VORNBERGER, 0. 1986. Implementing Branch-and-Bound
in a Ring of Processors, Proceedings of CONPAR
86 Conference on Algorithms and Hardware for
Parallel Processing, Lecture Notes in Computer
Science, No. 237, 157-164.

VORNBERGER, 0. 1987. Load Balancing in a Network of
Transputers. Second International Workshop on
Distributed Algorithms, Lecture Notes in Computer
Science, No. 312, 116-126.

WAH, B. W., G.-J. LI AND C.-F. Yu. 1984. The Status of
MANIP-A Multicomputer Architecture for
Solving Combinatorial Extremum-Search Prob-
lems. Proceedings of the 11th Annual International
Symposium on ComputerArchitecture, 56-63.

WAH, B. W., G.-J. Li AND C.-F. Yu. 1985. Multiprocess-
ing of Combinatorial Search Problems. IEEE
Comp., June 1985, 93-108.

WAH, B. W., AND Y. W. MA. 1981. MANIP-A Parallel
Computer System for Implementing Branch
and Bound Algorithms. Proceedings of the 8th
Annual Symposium on Computer Architecture,
239-262.

WAH, B. W., AND Y. W. MA. 1984. MANIP-A Multi-
computer Architecture for Solving Combinatorial
Extremum-Search Problems. IEEE Trans. Comp.
C-33(5), 377-390.

WEIDE, B. W. 1982. Modeling Unusual Behavior of Par-
allel Algorithms. IEEE Trans. Comp. C-31(11),
1126-1130.

YANG, M. K., AND C. R. DAS. 1991. A Parallel
Branch-and-Bound Algorithm for MIN-Based
Multiprocessors. PerfJ Eval. Rev. 19(1),
222-223.

ZARIFFA, N. 1986. Implementation and Analysis of
Three Parallel Branch-and-Bound Algorithms for
the Vertex Covering Problem. M.Sc. Thesis,
School of Computer Science, McGill University,
Montreal, Canada.

	Article Contents
	p. 1042
	p. 1043
	p. 1044
	p. 1045
	p. 1046
	p. 1047
	p. 1048
	p. 1049
	p. 1050
	p. 1051
	p. 1052
	p. 1053
	p. 1054
	p. 1055
	p. 1056
	p. 1057
	p. 1058
	p. 1059
	p. 1060
	p. 1061
	p. 1062
	p. 1063
	p. 1064
	p. 1065
	p. 1066

	Issue Table of Contents
	Operations Research, Vol. 42, No. 6 (Nov. - Dec., 1994), pp. 983-1189
	Volume Information [pp. 1177-1189]
	Front Matter [pp. 983-983]
	In This Issue [pp. 984-986]
	OR Forum
	Operations Research in Agriculture: Thornthwaite's Classic Revisited [pp. 987-997]

	OR Practice
	The Bureau of Mines Electric Utility Model [pp. 998-1009]
	A Heuristic System to Solve Mixed Integer Forest Planning Models [pp. 1010-1024]

	Survey, Expository & Tutorial
	The Total Tardiness Problem: Review and Extensions [pp. 1025-1041]

	Parallel Branch-And-Bound Algorithms: Survey and Synthesis [pp. 1042-1066]
	The Joint Replenishment Problem with Time-Varying Costs and Demands: Efficient, Asymptotic and ε -Optimal Solutions [pp. 1067-1086]
	Single-Visit Policies for Allocating a Single Resource in a Stochastic Environment [pp. 1087-1099]
	Bargaining and Search with Recall: A Two-Period Model with Complete Information [pp. 1100-1109]
	Direction-Specific Gradient Scaling for Interactive Multicriterion Optimization Using an Abstract Mass Concept [pp. 1110-1119]
	Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems [pp. 1120-1136]
	Markov Chain Sampling and the Product Estimator [pp. 1137-1145]
	Sojourn Time and Waiting Time Distributions for M/GI/1 Queues with Preemption-Distance Priorities [pp. 1146-1161]
	Technical Notes
	A Simple Release Policy for Networks of Queues with Controllable Inputs [pp. 1162-1171]
	Parallel Machine Scheduling with Batch Setup Times [pp. 1171-1174]

	Back Matter [pp. 1175-1176]

